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INTRODUCTION

An engineer confronted with the problem of designing an autopilot
system for a rocket vehicle whose ratio of length to diameter is moder-
ate to high is faced with a host of new problems. These problems arise
principally from the fact that rocket structures are usually highly flex-
ible because of the requirement for a low ratio of structural weight to
total vehicle weight (usually only 10 percent of the vehicle weight is
made up of structure that can resist elastic deformation of the vehicle
under the various forces to which it is exposed in flight). For such sys-
tems, the control engineer can no longer concern himself only with the
pitch, yaw, roll, and translation of the vehicle to obtain the requirements
that his control system must satisfy, but rather he must broaden the
scope of his analysis to include problems associated with the elastic
structure, both to discover the control system requirements and to
assure the compatibility of the control system with the dynamic charac-
teristics of the elastic structure. Specifically, if he does not consider
the effects of the elastic structure on the control system requirements,
he may well design a system that will be unstable when actually installed
in the vehicle; if he does not consider the compatibility of the control
system with the dynamic characteristics of the elastic structure, he
may design a stable control system that will cause structural failure
because of dynamic elastic deformations arising from this operation.
The above problems are not academic, but very real, and occur almost
universally in rocket vehicle design. The basic reason for this is that
the highly elastic heavy structure will usually have an elastic response
mode whose frequency falls well within the control frequency band and
cannot be neglected, in contrast to conventional aircraft design where
the control band can usually be chosen well below the important elastic
response frequency bands.

One mathematical formulation of a problem within the framework

outlined above was stated in the original procurement request, and is



in essence repeated here, paraphrased to conform to the particular
problem considered.
The steady-state missile dynamics are represented by a homo-

geneous system of differential equations.
x = Ax

where x is an n-vector and A an nXn matrix, together with an initial
state x(0) = x°. The system expresses various forces and torques due
to structural and aerodynamic effects. The time interval 0 st = T for
the problem is assumed to be sufficiently short that A is considered
constant. A scalar disturbance vy is introduced to represent wind effects
in the missile where, analytically, vy 4 y(t) is restricted to a class of
functions . In order to maintain stability under a disturbance as des-
cribed above, control elements are introduced into the system as a
scalar § in some class of functions V¥,

The system is now rewritten to include y and ¢ as
x = Ax +ay+ by , x(0) = x°

where a and b are constant n-vectors. Let Li be a given set of constants
such that lXiI < Li’ ij=1,2,**n assures that the system remains stable.
The basic control problem may now be posed as an optimum
control one; that is, a control must be found that will ensurelxil < L’i:<< Li
for all functions y in the class where L'i"is the least such bound for
each i, Since the control law which gives L1 may be different for each i,

it\l‘rnay be necessary to specify constraints on L1 For example, if
Li = cLi where 0 < ¢ < 1, the control law that mini'}rnizes ¢ could be
determined. Or the control law that minimizes L. only while satisfying
|Xi|<Li’ i=1"+-n could be found. :

The particular problem formulation for the present investigation

is to find ¢ that realizes

min max "x"
el yel
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Because of the difficulties inherent in this particular version of the

minimax problem, a related formulation is used

T
[[x(t) . Qx(t)]ndtll/n

o

max min lim
YeT LJJE\I’ n-—-w

where Q is a nXn positive semidefinite matrix.
The rationale behind the modified form is discussed in Section 2,

wherein the problem is specialized to determining { for

T
fpnei\lll/ ![X(t) . Qx(t)]ndt (D)

which is related to finding ¢ for

Tr
min f[zl<-zl-;>¢2v(x) +%¢2]dt (2)

el o |y=

where LJJZV is a positive semi-definite multinomial form., As a first ap-
proximation to the minimax problem, criterion (1) is used withn = 1,
resulting in a linear controller; the derivation of the design procedure
for the linear approximation is presented in Section 3., Better approxi-
mations are obtained using criterion (2); these are discussed in Section 4.

The design procedure developed in Section 3 has been programmed
for the IBM 7094; the programs are discussed in Section 5, as are the
results of applying the design procedure to a five-dimensional model of
the booster (taken to be two linked rigid bodies). The controllers thus
designed were simulated on the IBM 7094; the results of the simulations
are presented in Section 6,

A more complete mathematical model, including the effects of
body bending, sloshing, and sensor dynamics, is developed in Section 1.
The 26-pole model derived is about as large as the capacity of the com-
puter will allow without modification of the programs, and is also about
as small as it could be to be a good representation of the physical

system.



A recapitulation of the results of this investigation,along with

suggestions for further study,is given in Section 7. In addition,several

appendices are included for background material, for detailed deriva-

tions, or because they were published as papers based on the material

generated under this contract.




1. MATHEMATICAL MODEL

In the analysis or synthesis of any physical system, one of the
first and most important steps is the selection of an appropriate
mathematical model. For initial synthesis and feasibility analysis,

a rather gross approximation to the actual dynamics may suffice; for
final analysis and simulation, a more faithful description is usually
necessary. When the physical object is as complex as the non-rigid
aeroballistic vehicle treated herein, the problem of choosing the model
is especially difficult, not necessarily from the point of view of the
dynamic description, but rather from that of determining how much
fidelity is required to achieve a sufficiently accurate assessment of
the behavior.

The model derived in this section is intended to be complete
enough for an accurate determination of the dynamics of the vehicle,
and yet of a low enough order to allow computer simulation. Included
in this model are:

1) Aerodynamic forces (considered to be located at the vehicle

center of pressure).

2) Inertia reaction torques on vehicle motion due to nozzle

dynamics ('tail wags dog'' effect).

3) A flexible vehicle (bending modes).

4) A liquid fuel (sloshing modes).
Crosscouplings of bending and sloshing modes with rigid
body modes because of engine thrust.

6) Couplings of bending and sloshing modes with engine
dynamics,

7) Sensor dynamics.

Not included are the effects. of:

1) A distributed aerodynamic force on vehicle motion.

2) Flutter due to aerodynamic forces. (This is an aeroelastic
phenomenon, to be accounted for during the airframe struc-
ture design phase; it is not a control problem. )

3) Bending motion on aerodynamic forces.



The coordinate system definition and the definition of important physiéal
constants are shown in Figure 1-1. The moving coordinate system is
located with its origin at the cg of the booster, oriented as shown. If
the vehicle were rigid and the nozzle undeflected, the x-axis and the
center line would coincide; the z-axis is in the plane of the local vertical
and the velocity vector, which is also assumed to be the plane of the
deflected booster centerline. The angle w denotes the rotation of the
center line due to a deflection of the nozzle in the absence of bending;

in this case the center line is taken as the line through the centers of

gravity of the vehicle minus nozzle and of the nozzle alone.

EQUATIONS

The first four equations, which describe the motion of the vehicle,
may be obtained through the use of Figure 1-1, by summing forces and
moments; Table 1-1 is a list of symbols. (Note that a, ¢, LPg, and P
have been assumed small, )

Normal Force Equation.

The normal force equation is found by summing forces in the
direction normal to the missile's longitudinal axis (z direction) and

equating it to the acceleration in that direction.

MaZ=N0a+Mgcose¢+(Na—D)w—Tq;g+Tc[3 (1-1)

Axial Force

The force along the longitudinal axis of the missile (the x direc-
tion) is

MaX:TC+T—D—Mgcose (1-2)

External Moment Equation

The moment equation is found by summing the moments about the

center of gravity of the missile

= Y + D N ¢ - - 2 -3
1 Napo‘ v+ olp ¥ (T+Tc)ug+TJquJg T, gﬁ (1-3)

The following kinematical equation will be useful:

1-2




LOCAL VERTICAL TANGENT TO REFERENCE TRAJECTORY

BOOSTER UNDEFLECTED CENTER LINE
NOZZLE LOCKED

CENTER LINE OF RIGID BOOSTER
WITH NOZZLE DEFLECTED

C.G. OF TOTAL BOOSTER

BOOSTER CENTER LINE

YMQ NOTE: Y AXIS IS OUT OF THE X, Z PLANE TO
I FORM A RIGHT HAND COORDINATE SYSTEM

NOZZLE GIMBAL POINT

NOZZLE GIMBAL POINT C.G. OF TOTAL BOOSTER

NOZZLE C.G. AERODYNAMIC NORMAL FORCE
V ~Nga

J

I AERODYNAMIC CENTER
1, 1, —— et OF PRESSURE

X

Figure 1-1. Coordinate system for analysis of the flexible booster.
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acceleration in direction identified by subscript
angle of actuator deflection

angle between reference trajectory and missile's longitudinal
axis

angle of attack

crosswind acceleration

angle of nozzle deflection
normalized deflection of ith bending mode

. . .th .

normalized deflection of i~ sloshing mode
acceleration of gravity
normal aerodynamic force per unit of angle of attack
aerodynamic drag

thrust of inactive engines

thrust of active engines
nominal absolute velocity of missile (c. g.)
total mass of missile

total moment of inertia of missile

mass of active engines

moment of inertia of active engines

. : .th .

effective mass of fluid for i~ sloshing mode
effective location of mass of fluid for ith sloshing mode
d . . .th .

amping ratio of i~ sloshing mode

.th .
natural frequency of i~ sloshing mode
. : .th :

damping ratio of i~ bending mode

natural frequency of ith bending mode

Table 1-1., Nomenclature,.
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i()

()

normalized slope of ith bending mode at location identified by
subscript

normalized deflection of ith bending mode at location identified
by subscript

distance between center of mass of engine and the gimbal point
(positive for gimbal point forward of center of mass)

distance between center of mass of missile and the nozzle
gimbal point (positive for gimbal point aft of center of mas s)

distance between center of mass of missile and center of
pressure (positive for c¢.p. forward of c.g.)

friction damping factor for nozzle travel

effective spring constant between nozzle and case
effective spring constant of actuator arm

angle between local vertical and reference trajectory
I (r.)2 dm = m. (ri)2

m. 1 1
1

where: T, is the radius of gyration of the sloshing fluid. The
integration is taken over the effective mass of the sloshing
fluid (mi).

z-axis intercept of the center line of rigid body with nozzle
deflected

rotation of center line of rigid booster due to nozzle deflection

static sensitivity of actuator
actuator time constant
actuator natural frequency

actuator damping ratio

Table 1-1. Nomenclature {(continued).



Normal Acceleration

The vehicle acceleration in the z direction is given by:

a =-Vé-a a+Vep+Va (1-4)
Z X w

The remaining equations require some explanation of the repre-
sentation used for the bending and sloshing dynamics. Both effects re-
sult from the motion of continuous media, and the fundamental dynamical
equations. Application of the technique of separation of variables to
these partial differential equations results in an infinite sequence of sets
of total differential equations for each. Each set in the sequence consists
of differential equations in spatial coordinates and a differential equation

in time; the solution to such a set is called a mode. For a detailed dis-

cussion, see the references. The resulting time equations are:

Body Bending Equation

The bending equations are found by applying Hamilton's principle.

This yields for,the kth bending mode,

2

s .
M 25pk “Br Y T lep) 9

-M(ax‘l'gcose))\ v

A kg

" Tog Yy B E M )W BB F M My 9

i i j i kxi )
(1-5)
7™ Pk, zﬂz‘(xkxlT)‘kg)(aergcose)éz]
= - My Ly ¢kg+ln>\kg)B—Tc ¢kg6

Fluid Sloshing Equations

The sloshing equations are obtained by the same method as the

bending equations. This method yields for, the kth sloshing mode,
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. . 2 o .
+ v -
§k+2§Skakék+(wSk) Ck+(ax+gcos 6)w+ka v-a,
i .. ( 8) ) o 0 (1-6)
-Vp -x_ ¢ tZ (a_ t gcos . q. - ¢. q. =
k s X 1xk 1 1xk 1

The spatial equations may be solved to determine the positions and
slopes necessary to solve (1-5) and (1-6); or, more likely, they may be
found experimentally,

Figure 1-1 plus the quantities entering into (1-5) and (1-6) lead to

the following geometrical equations:

Center Line Deflection

The deflection of the vehicle center line (displacement of c. g.) due

to nozzle deflection and sloshing fluid is given by

Mv = Mnlnﬁ - ?mj C’j (1-7)

Center Line Rotation

The rotation of the vehicle center line due to nozzle deflection

and sloshing fluid is

= - + 1~
Iw @, + ML ) B ?mjxjg. ??)\jxif‘iqj (1-8)

Engine Gimbal Point Deflection

The deflection of the engine gimbal point from the undeflected

center line of vehicle is given by

= v - +
g v lgw ?(bigqi (1-9)

Engine Gimbal Point Slope

The slope at the engine gimbal point is

= -w-~-2Z N, q, _
Vg “ Mg % (1-10)
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There is one final dynamic equation:

Engine Dynamics

The engine dynamics are found by summing the moments about

the engine gimbal point. This yields

B+ 3+ + - + ®
In B Bn B (Kn Ka) B ann as (In * Mn ﬂm ﬂg) ¢

+Mn£ngcos B¢ +M(ax+gcos 8) v —Intbg - Mn ﬁn(ax+g cos 9) LJ,lg

-M £ U -Z (a_tgcos®)m. L. = K B (1-11)
noou g J X = ] 7] a a

After elimination of the intermediate variables of v, w, ug,
and kPg by direct substitution, Equations 1-1 through 1-11 reduce to
Equations 1-12 through 1-16 (the coefficients Y are listed in Table 1-2).

Normal Force Equation

a + Y19 - ¢ + \/2¢ + Z(y;qi) + Z(Yi} t“j) = YSB + dw (1-12)
1 J

Moment Equation:

S+, . i ] - (1-13
¢ Y6’¥+12(Y7qi)+7;<\(8§j) Vg B )

Nozzle Dynamics Equation:

. 1. 3 i o
Y10 ¢+Y11a’+? (le qi)+zi: (y13qi)+2 (Y14 Z’J)
) (1-14)

FE s L) Y e B t Y B Y8 = YigP,
j
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L3

Bending Deflection Equation (kth mode):

.. i . . . i
Voo ®F =) ) T e Fvgp gt =023 9) T Yoy 9

(1-15)
j e j _ v
+ ? (V35 &5 +?~ (Y26 &5) = Yo7 B Tvpe B
Sloshing (kth mode):
Vag P vgg @ @t T (Vi d) H 2 vz a) + 3 (v, L)
1 1 J
(1-16)

j .. . _ + .o
+? (V33850 ¥ ¥34 & T vas b T g by T Y37 B v P

Sensor Equations

In addition to the equations of motion, it is necessary to introduce
equations that describe the output of any sensors used. Sensors
mounted on the vehicle sense the rigid body motion, the motion of
the vehicle arising from the bending modes, the sloshing modes and the
engine dynamics. The following three equations show the total inputs
to the various sensors., It should be noted that these equations apply
only to '"perfect'” sensors. No sensor dynamics have been included.
The addition of sensor dynamics requires the cascading of the sensor
dynamics with the output of the ""perfect" sensor defined by Equations

1-17, 1-18, and 1-19.

Angular Displacement

The angular displacement sensed by an instrument located at sta-

tion P along the missile's longitudinal axis is given by

_ i j
Psensor = ¢ T §(Y39 qi) + ?(Yélogj) + Y41[3 (1-17)

1-9



Rate

The input to an angular rate sensing instrument located at station

P along the missile's longitudinal axis is given by

_ . j :
¢sensor =t Zi‘Y39qi * ?Y4o€j * \/41‘3 (1-18)

Normal Acceleration

The input to an accelerometer which senses acceleration normal

to the longitudinal axis of missile located at station A is given by

Np = Vgp®F Y38 - V3@ T Vgt Zi(Y45 q;)

- i} (1-19)
+ 2 (v £ +vy,P
J

The equations governing the sensor dynamics depend upon the

mechanization of the sensor; the following are typical sensor dynamics:

Angular Displacement

If it is assumed that the angular orientation is measured by a
position gyro, the sensor dynamics can be taken as a pure gain. The
attitude reference is a ''free'' gyro (really a three-axes gimballed gyro),
and the orientation of the body relative to the gyro is read out by means
of synchro pickoffs, Any dynamics associated with the motion of the
gyro would arise as a result of manufacturing inperfections, e.g.,
bearing torques and mass unbalance. The synchro is essentially a vari-
able transformer; the dynamics associated with the synchro signal arise
in the signal processing circuitry and are quite high in frequency.
Synchro pickoffs, or analogous linear devices can be used to measure

engine gimbal angles.




T T

T +T-D+N
C a

= _ £
Yy MV v cos ®
= &
7 % cos 0
. F T-D+N
i T k o
= o — + —
Y3 MYV Nig T E <IV )\ixk> < M >
; T-D+N
Y4 T ° MV My X
T T-D+N
Y5 = -3v T MVI O * 1, 4, M)
N, 2
Y6 = - I
. - (N 0+ L) T,
= 4+ = - + —
Y7 T (b ¥ g Mg 02 = M JTT %
; T +T-D (N £ +TH)
= - m. + m. X
Vg MI j y: i %
T, (T+T_-D) (N, £+ T 2)
= - = - - +
Yo I zg MI Mn ﬁn (I)Z (In ﬂn £, M)
Table 1-2. Coefficient definitions.
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Table 1-2, Coefficient definitions. (continued)
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T [ o) [3 )
21 ™MI 2 i kxl ’ L ix,
+ — [ /F, .
M [ﬂ ( £ ix, kx£>]
Y2z = 2 g “Bk
. T ¢ Té
vi, = - k& 4 ke [5 gy
23 M ig MI 0 ( ? 1x[)
- 2
Vag = (g
J ™5 m
Y = z __J
25 MI [2 (Fﬂ)\kxl)] .
. +T -
; :<TC T D)m . CTo, o
Y26 M M ko MI i %
I M4 (I +M_£_1)
Y27 = W Mig " = ¢ e [2 p
M " kg M kg I ) < ﬁ)\kxﬂ)
T (T +T-D> M I +M_ 2 ¢\ To
- __¢ o+ c nn_y + (n n n g k
Y28 M Pkg M M kg T M
X
_ %k
Y29 © 7%
. ix
. k a1 ;
Y3p T TV T Xk TV [f (fz xixlz)]
Table 1-2. Coefficient definitions, (continued)
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Yg2 = La
Yg3 =V
T +T-D
- C
Ygq =~ ~ M - gcos ©
0
i _ A
Y45 = 1 [ﬂz (szlxﬁﬂ " oA
- J
R L G
46 ™ I i
M I M)
Y47 M T
ax
Y48 Y

Table 1-2. Coefficient definitions. (continued)

Angular Rate

Vehicle angular rates are usually measured by single-axis spring-
restrained gyroscopes (rate gyros) which exhibit damped oscillatory
behavior (second order). Accelerations about the axis perpendicular to
the spin axis and the sensitive axis appear as rate errors, as do cross-
coupling effects at large rates. The engine gimbal rates can be meas-

ured with a tachometer with negligible dynamics.

Normal Acceleration

Normal acceleration is also usually sensed by devices exhibiting
second order behavior, e.g., damped spring-mass linear accelerometers

and integrating-gyro accelerometers,

1-14
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Actuator Dynamics

If the signal from the controller is used to displace the control
valve of a hydraulic actuator, the transfer function between the control

signal and the actuator displacement may be taken to be of the form

K
s

SZ ZQS
(TS S+1)<—2— + TS'l'].
S

w
S

(1-20)

Model Dynamics

Before the model is completely specified, the number of bending
modes and sloshing modes to be included must be determined. Since
the natural frequencies of the dynamics increase as the mode number
increases, the number of modes is usually determined by neglecting
those modes corresponding to natural frequencies ''sufficiently high' in
comparison with the control system response characteristics. For the
nonrigid aeroballistic booster studied herein, four bending modes and
three sloshing modes were retained, resulting in a 26-pole transfer
function (or 26 state variables). A descriptive block diagram of this
model is shown in Figure 1-2. The summation points should be inter-
preted as indicating that the given input affects the block in question,

but not necessarily in the strictly additive manner shown.
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STATE

ACTUATOR
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=
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34,

U

BENDING
8 POLES

9

RIGID VEHICLE
3 POLES

Figure 1-2.

SENSORS
4 POLES

Block diagram of 26-pole model.
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2. MINIMAX PERFORMANCE CRITERIA

In the original proposal to MSFC, Hughes Aircraft Company
defined a class of performance criteria which were to be investigated
to determine their usefulness for generating control laws. These
criteria are designated "minimax'' and pertain to the keeping of speci-
fied combinations of states of the given system as small as possible
when the system is acted upon by the "worst' of a class of external
disturbances. This class of performance criteria can be better
described in a mathematical form.

Let the system under consideration be governed by
x = Ax + ay + by

where
A is an nXn plant matrix
a is an n-vector, coupling the control into the system
b is an n-vector, coupling the disturbance into the system
y is the scalar control to be chosen

Y is the disturbance,

Let Y=Y (t) be a member of the set of allowable disturbances I, denoted
by yeI'; similarly let ng Y (x)e¥ , the allowable set of controls. Then

one form of minimax criterion is given by the following

min max ”x” ,

Yel yel”
where a variety of norms may be used for || H . One convenient norm is
RERF R AR
where
x|, 2 = oxm
with
Q = Q% = nXn positive semi-definite matrix.

2-1



Using these definitions and the fact that

/T‘f(t)‘n dt‘l/n |

(e]

max |£(t)] = lim
te[o,T] n—o

we can write this minimax criterion as

T
min max lim

pe yel' n—w |70

1/n
[mw-oxunndﬂ

Ancther version of minimax criterion results when one interchanges
max and min Doing this we may write
yeI el

T
max min lim

n 1/n
[x(t) Qx(1)] d4
vell eV n— o

o}

This form is mathematically more tractable than the previous one and is
the one which Hughes Aircraft Company studied extensively during the
past year. It should be emphasized that, in general, one does not get
the same value for the performances indices in the two cases. The exact
conditions under which such an operation yields the same numerical
results before and after the exchange is not known. This is a current
area of research both at Hughes Aircraft Company and many other insti-
tutions. In what follows we shall only concern ourselves with perform-

ance criterion

T
max min lim

l1/n
[xuerand4
vel ye¥ n — o

o
Specifically first ccnsider

T
min lim

yelr n—mo| 0

l1/n
[xuroxuundﬁ

This in itself is a difficult mathematical problem and must be further

simplified before a meaningful solution can be presented. With this in

2-2




-

mind we propose studying the minimization of

l/n

)-Qx(t) "

for some large fixed integer n, instead of minimizing

T n
[ - axm)

o

1/n
lim
n—o

Again rigorous justification of the closeness of these two problems
is difficult, but the results of simulations have shown the simplification

to be valid. The actual problem considered is

T
[ =t ax@] at

o

1/n
min
ey

The first approximation to be considered is the case when n=1,
This is described in Section 3 and the necessary background is given in
Appendix C. For the case n=1 an exact solution may be found, but in
the case n >1 only an approximate solution is easily obtained,

In Section 4 minimization of performance criteria of the form
T jee]
1 12,12
/ [z (2—v>¢2v(x)+2¢ +ZL’JnI, dt
° Lly=1

where Lpzv(x) is a positive semi-definite multinomial form, is described.

It should be noted that the perfcrmance criteria

T n
| xw-ox(®)™ at

(o]

can be put in this form by letting LJ,JZn(X) = (x'Qx)" and Wy, (x) =0

when v = n,



L3

Thus the problems considered there are of a more general nature

than minimization of




3. LINEAR DESIGN PROCEDURE FOR MINIMAX PROBLEM

Using the standard techniques of control system analysis and
design such as root locus, Bode analysis, etc., for high order systems
usually results in a great deal of successive approximation and often
depends heavily on the ingenuity of the particular investigator carrying
out the analysis. Indeed, the concept of optimum design is not even
considered in general, for the very nature of the methods used necessi-
tates individual attention for each problem. These difficulties, coupled
with the fact that the''classical' methods have no natural extension to
systems with time-varying parameters and nonlinearities, have led
modern contributors in control theory to consider the problem from a
fresh viewpoint — that of state space analysis. The advantages of this
approach are manifold. Involved and often very specialized computa-
tions are reduced to common matrix manipulations quite amenable to
present day high speed computing devices. The idea of optimal design
can be stated in a very simple manner which is applicable to a myriad
of problems. Physical variables are not lost in a jungle of mathematical
manipulation, but rather maintain their identity throughout the analysis
of a problem, thus permitting new insight into the role of these variables
in the overall design. Perhaps the most important single advantage of
state analysis is that there is no conceptual difference in the presentation
of linear, linear time-varying, or nonlinear problems. All this has
inspired a vast amount of research which, in turn, has resulted in a
flood of publications in the area. In their zeal to contribute, many writers
have overlooked completeness in favor of broadness, and even though
many complex problems have been considered, efficient engineering
solutions to many important control problems are lacking. Although the
work of R. E. Kalman is nearly definitive from a mathematical view-
point, it neglects the design problem from the point of view of the prac-
ticing control engineer. Because of his determination to solve the auton-
omous and nonautonomous optimal control problems simultaneously,
Kalman failed to attain ultimate simplicity in the solution of the former
problem. Thus his theory for constant coefficient systems depends on

the steady-state solution of a matrix differential equation, a numerically
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cumber some proposition. Work at Hughes, on the other hand, as pre-
sented in the paper, '""High Order System Design Via State Space Consid-
erations, ' has permitted the design of optimal single channel controls

by purely algebraic means, thus reducing computer time and allowing

for extension to high order systems. The following discussion is based
primarily on that paper.
In general, a linear system with single channel control can be

represented by the set of differential equations

X = Ax + ay (3-1)
where x is the state vectar ;
a is an actuator vector, and § is a scalar control function, assumed here
to be a linear combination of the states at any instant of time. The object
of the design procedure under consideration is to find this linear feedback
relationship so as to optimize the performance of the resulting ''closed
loop' system. In particular, the elements of a vector g are sought such

that ¢ = g * X minimizes an integral of the form
[e ]
- L[ tecx +yhar (3-2)
o

where C is a symmetric non-negative definite matrix. The choice of
the matrix C is equivalent to specifying the nature of the optimality to
be considered. Indeed, it directly determines the performance of the
resulting system. This matrix can be appropriately chosen only in the
context of a particular problem. For aerospace vehicle stabilization,
quantities such as structural load, pitch error, etc., must be kept below
certain bounds while the maximum of some critical quantity such as
lateral drift is minimized. Indeed, load, pitch error, and drift can be

expressed as a linear combination of state variables of the form
1 . ~
ot x|, i= 1,2, (3-3)

By noting that in the integral

/m[(qi' x)/ kg 2 gt
(o]

the total contribution of time at which |q xl >k _holds is '""penalized"

(3-4)

disproportionately compared to the times at which Iq . xl < Ky holds,

*Presented at 1965 JACC.




the matrix C can be specified. In particular, the abovementioned

objectives are satisfied to a first approximation if

C = Klql(ql)* + quz(qz)* tooo t kg (g (3-5)

In the analysis of systems by state space approaches, the concepts
of controllability and observability lie at the very foundation of system
theory. Mathematically, if controllability is ensured, there always
exists some control to bring the system from one arbitrary point in
state space to any other. If an output is observable, that output cannot
vanish identically for a finite period of time unless the system is totally
at rest. (See Appendix F for mathematical criterion for linear systems. )
Heuristically, the lack of controllability implies an ''open circuit'' some-
where in the system input (i. e., one or more modes of the system can-
not be reached). Analogously,' if an output is not observable, then an
"open circuit' exists in that output path. These ideas do not appear in
the classical transfer function methods, for the transfer function itself
is only a valid representation of the observable and controllable part of
a linear dynamic system. Appropriate tests for these criteria can be
made only when the system is represented in the 'matural' form of
simultaneous differential equations in many variables.

The theoretical development of the actual design method in ques-
tion is fairly involved and so only an outline of the ideas will be dis-
cussed here. Basically, Pontriagin's Maximum Principle is applied to
the system (3-1) to give the necessary conditions for minimizing the
integral (3-2). Combining the resulting equations with stability require-
ments as formulated by Liapunov's Second Method results in a unique
feedback law which can always be found by purely algebraic operations.
In particular, the design method suggested is based on finding the re-
solvent of the matrix A (evaluating the matrix of polynomials in s given
by [sI - AJ -1

algorithm or indirectly by standard matrix manipulations. In finding the

). This can be accomplished directly by Leverrier's
P y by

resolvent, the characteristic equation for the system is also explicitly
displayed. From these quantities, and the chosen performance matrix
C, the characteristic equation for the optimal closed loop system can

be directly determined. Then, with the aid of a specially derived
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relationship between the open and closed looped systems the vector g
can be found. It is to be noted that thus far system controllability has
been assumed. The ''amount' of controllability as given by a specific
algebraic criterion determines the magnitude of the vector g and hence
the feasibility of practical implementation of linear control.

In addition to being optimal in the sense discussed previously,
systems designed by these methods are remarkably adaptive to large
variations or to saturations in both feedback signals and actuator
characteristics. It is shown in A.ppendix C that once a system is de-

aioned to minimize 2
igned to minimize 2

guadratic performance iudex, o Liapunov function
ee

can be found which will guarantee the stability of the system to certain
initial perturbations for considerable variations in the feedback signal.

Furthermore, under these conditions the modified performance index

@

1/2'/0 [X.Cx+(g.x)2 dt (3-6)
will not be increased beyond the nominal minimum value found for the
system if no perturbations were present. Adaptivity to feedback satu-
ration is particularly important when the elements of the control vector
g are relatively large.

In a wide class of problems, saturation may not be permissible
or it may be very desirable to keep the magnitude of the control vector
small. This can be readily accomplished by taking the matrix C in(3-2)
to be identically zero. Minimizing the resulting performance criterion
will then be equivalent to minimizing the "amount'' of feedback in a
least-squares sense. With a stable plant this so called "minimum
effort" control reduces trivially to no control at all. However, with an
unstable plant such a criterion generates a closed loop system whose
poles consist of the stable plant poles and the reflections in the imag-
inary axis of the unstable ones. In this case then, the optimal control
law can be tested easily and compared with other criteria.

In the design of large aeroballistic launch vehicles there are
situations in which linear feedback can yield an exact answer to the
minimax control problem. This occurs when an arbitrary linear

combination of state variables can be forced to decay directly from an




initial perturbation. The necessary and sufficient conditions for the
existence of such an''ultraminimax'' control are shown in Appendix G
along with an explicit formula for that control when it exists. It is

also shown there that ultraminimax control is a limiting case minimizing
a criterion of the form (3-2) when the terms in the state variables are
increasingly weighted in comparison to the control term.

It is to be emphasized that designs discussed up to this point are
really incomplete, for they assume measurement and feedback of all
state variables — a highly unlikely situation in common problems. To
supplement these methods, a filter has been designed which can approxi-
mately generate g-x given only incomplete state information. That is,
the output of linear sensors measuring independent observable variables
can be used to generate the optimal feedback control. The filter con-
figuration in general consists of parallel networks, each operating on
a specific sensor output. These networks have common poles which are
completely arbitrary. The number of poles needed in the filter is usually
equal to, or slightly greater than, the quantity n/m - 1, but less than
the quantity n - m when n is the order of the given system and m is
the number of independent sensor outputs. It is found that the optimal
system poles as determined above are mechanized in the closed loop
system when the filter is introduced. Furthermore, as the real parts
of the chosen filter poles become more and more negative, the corre-
sponding poles of the overall closed loop system approach more and
more closely the chosen poles themselves. It is noted that this method
of filter design may be limited because of increased sensitivity to sensor
noise and system parameter variations when fast poles are introduced.
The important problem of supplementing this design with a method for
optimizing filter pole locations in accordance with a minimal variance
scheme has not yet been considered and is an open research problem.
One possibility would be to estimate all state variables via a Kalman
filter and then reconstruct g-x . This, however, always introduces
n new poles to the system. For high order systems, a Kalman filter
can be quite cumbersome and expensive. As an approximation, perhaps
the dominant poles of the Kalman filter can be used in optimizing the
poles of the parallel filter described above. Additional research is

needed to determine the feasibility of this proposition.
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4. DESIGN PROCEDURE FOR NONLINEAR APPROXIMATION
OF MINIMAX PROBLEM

The problem of minimizing a quadratic performance criterion
for a linear time-invariant plant subject to a mean square constraint
on the cost of control leads to a linear control law. As a natural
generalization of this problem, the problem of minimizing a quartic or
higher order performance criterion subject to a mean-square constraint
on the control may be considered. The theoretical details of the solu-
tion to this problem are presented in Appendix E. In it, the known fact
that it is necessary to introduce quadratic terms in the performance
criterion to ensure stability of the overall system is reviewed. Then
the quartic and higher-order terms are introduced in order to impose
bounds on specified state variables. In other words, the linear control
derived from the quadratic terms stabilizes, and the cubic or higher-
order control derived from the quartic or higher-order terms limits,
the transient response to the desired region. This is exactly what might
be suspected, since the stability of a nonlinear autonomous system in
a neighborhood of the origin is determined by the linear terms. The
nonlinear control law is derived by finding the unique solution to the

Hamilton-Jacobi partial-differential equation for the problem posed.

As shown in Section 2, performance indices of the form
T o
1 Ly2 4Ly 4-1
~£ 2. [(TV>¢2V(X)+ 27t | @ (4-1)
v=1

where ¢2v(x) is a thh order positive semidefinite form, y is the control
to be chosen, and ¢n£ is the nonlinear portion of the control, arise

quite naturally as approximations to a minimax performance index.

This performance index may be interpreted in an alternate

manner; namely, minimize

T e8]
| [Z <a21-> wz_v(x)] at (4-2)
o] v=1
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subject to

T
f LIJZ dt < P (4-2b)
o 1
and
T 2
./o- Yo, dt = PZ (4-2b)

By the use of Lagrange multipliers, one can change (4-2) to (4-1). This
is explained in detail in Appendix E.

During the past year, Hughes has studied (4-1) in detail to
dtermine an optimal control law which will lead to a minimax type of
response for the closed loop system. A concise statement of the prob-
lem, as well as the synthesis procedure used, follows below. Minimize
the performance index @

o[

o

[z (—zl—v) 4, () + 3 %ﬁz] dt (4-3a)

v=1
where
by, (x) 20, x #0 (4-3b)
and
2v
gy, (bx) = K57 9 (x) (4-3c)
subject to
x = Ax + ay (4-34d)

The lJJZV(X) are the given ZVth order forms and Y is to be found.

The control law

P(x)= - a-grad(x) V(x) (4-4a)

where ©
A /1
Vix) = Z > (x) (4-4Db)
‘ 2\ %2 ’
v=1
is the optimal control law for (4-3).
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The expressions ¢2v(x) must be related to the given expressions
\PZV(X) in order to complete the solution. This relationship is separated
into two parts characterized by v =1 and v > 1. Considering the case

V = 1 and introducing the notation '

b, (%) 2 x. Cx (4-5a)
and

A
¢, (x) 2 x- Bx (4-5b)
it is necessary that B satisfy the equation

A"B + BA - Baa B = -C (4-6)

For the case v > 1, it is necessary that the llJzV(x) satisfy the equations

Ax - grad(x) d)Zv(x) = —‘«}JZV(X) (4-7a)

where A
A = A-aa"B (4-7b)
Here A corresponds to the stabilized linear portion of the system. With the

above relationships, the following holds for the optimal closed loop system.
T [s¢]

J 2 () b 24 2 ¥ dt:i (35) 02, &) (@-8)

o v=1 v=1

Note that there is equality in equation 4-8 and the right hand side is
identical to the Liapunov function V(x©) chosen for the closed loop
system. Thus V(x°) is the unique solution to the Hamilton-Jacobi
equation for the problem stated. Optimal control laws found by this
procedure may actually saturate when mechanized. The resulting
system may become unstable for a large initial condition because of the
"limited amount'' of control available. Estimates for the allowable
range of initial conditions in such a situation are derived for the linear
case in Appendix C and for the nonlinear case in Appendix E.

These estimates determine the domain of asymptotic stability of
the resulting system. However, when disturbances are coupled into

the system, one is faced with a problem of determining the region which
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bounds the system motion when acted upon by persistent disturbances.
Thus it is necessary to find a suitable Liapunov type function for the
nonautonomous disturbed system. (This is called ''practical stability"
by Lasalle and Lefschetz.) Some results have been obtained in this
area so far and there is considerable evidence that further results are
possible.

It should be mentioned that this problem of determining the
"operating'' region of a disturbed system results from the fact that the
optimal control law was found for an undisturbed system with an initial
condition. However, results of Potter and Tung seem to indicate that
a system designed on this basis will be the best system when the actual
disturbance is white noise.

To gain some insight into the problem of determining the domain

of stability of the disturbed system consider Figure 4-1.

&
Sy [
NS k%

Figure 4-1.

Figure 4-1la depicts the motions of the undisturbed system for two
initial conditions x4, and xg55. When the system motion starts in the
region IR, as is the case for the initial condition x4, it eventually
returns to the origin. Thus IRO represents the domain of asymptotic
stability. It should be remarked that IRy is bounded when the control
is bounded. Theorem 2 of Appendix E characterizes the region IRg.
Figure 4-1b represents the type of motion that would be
expected for a disturbed system when the magnitude of the disturbance

is bounded. Any initial condition x4, €IR, -IR | leads to a motion which
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meventually enters IR, and remains there. Any initial condition 02

outside of Ry leads to motion which is unstable because of the assumed
boundedness of the available control. Determining the regions IR, and
IRy of Figure 4-1b would allow the designer to assess accurate bounds
on motion of the controlled system. This is an area of study which can

yield valuable results for designing minimax control systems.



5. COMPUTER PROGRAM FOR LINEAR DESIGN PROCEDURE

BACKGROUND

In this section, the paper entitled "High Order System Design
via State-Space Considerations' is mechanized by two basic digital
computer programs, including several special subroutines. Included
are the listings of the routines, associated diagrams,and a complete
dictionary of symbols. The actual IBM 7094 printout of a case using
a fifth order Saturn model is given.

The digital programs are referred to by their Fortran language
names, CNTRLZ and FILTER. Following is a brief description of their
functions: Given the system matrix A, the actuator vector, a, and de-
sired performance index matrix, C, CNTRL2 computes the optimal
closed loop poles, then computes the corresponding control vector, g.
FILTER, using data from CNTRL2, computes the parameters of a
simple multiport filter to approximate the desired result. Another pro-
gram, CNTRLI1, was written which would compute the control vector to
achieve arbitrarily specified closed loop poles. This program has been
dropped, since the same result could easily be gained by reading in the
arbitrary poles as data and bypassing the optimal pole computing por-
tion of CNTRL2.

Several subroutines were written to be called by one or both of
the main programs. ALPHAS uses double precision arithmetic in the
Leverrier algorithm to compute the coefficients of the characteristic
equation of the system matrix, It is used twice in CNTRL2, first to
compute the open loop coefficients, then to compute the closed loop
coefficients as a check on the main program. POLYWG determines the
optimal closed loop poles to be obtained by CNTRL2, SYNTHI performs
most of the vector and matrix manipulations of CNTRL2 to arrive at the
control vector, g. OBSMAT computes the observability matrix and fil-
ter arrangement matrix for FILTER. Three minor subroutines were
written and used by several other routines. MATMPY multiplies
matrices, DMATMP does the same in double precision. ORDINV re-

verses the order of a one-dimensional array, useful since the library
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subroutines use data which is in reverse order to that required for
clarity in these programs.

The programs are completely self-checking, with the exception
of POLYWG. To check the validity of POLYWG, an arbitrary example
was computed by the use of the Leverrier algorithm, which is itself
self-checking. Enough confidence in POLYWG has been developed so
that the possible incorporation of the Leverrier algorithm as a check
on POLYWG (mentioned in an earlier report) has not been carried out.

Four library subroutines available at Hughes were incorporated
into the routines. Their functions are described briefly in this section.
No details seem necessary, because anyone outside of Hughes Aircraft
wishing to make use of the Linear Design Procedure would have to sub-
stitute other subroutines which are at his disposal.

An effort was made to make the programs as self-explanatory as
possible, with the aid of many comments in the listings, accompanying
block diagrams, a complete dictionary, and annotated comments on the
printed output. Hence the explanations in the next section are not all

complete in themselves, but serve merely to clarify a few details.
PROGRAM DETAILS

CNTRLZ

By having two performance matrices available, it is possible to
vary the emphasis on different requirements by varying two weighting
factors. In this case, the first performance matrix, Cl, was computed
to minimize drift, and the second, C2, was computed to minimize load.

A value of either 1 or 2 for MPRNTS must be read in as data,
according to whether or not it is desired to write the S-matrices during
the program. They should be written if the system transfer functions
are desired. If MPRNTS = 2, ENORM, the sum of the absolute values
of the So elements, is written instead, This is a sufficient indication of
roundoff error and takes much less space.

Although the calling statement for ALPHAS contains ELINV in the
argument both times, there is no meaning in the second call, ELINV
is used only because it is no longer used by the program, hence is a
convenient matrix to fill a space.
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The coefficients of the optimal closed loop characteristic equa-
tion (ALFOPT), as determined by POLYWG, are in inverse order —
the standard order of the coefficients being assumed the order of powers
of s to which they correspond. The order is reversed and the new array

is called OPTALF.,

FILTER

The input of the sensor matrix is arranged so that various num-
bers of sensors can be tried without rewriting the program. FEach card
of a set of five represents a sensor. A blank or zero card indicates no
sensor. The order of the sensors is not important, since the program
eliminates the zero rows and labels the remaining ones as Sensor No, 1,
Sensor No. 2, etc. The filter numerators are correspondingly numbered.

The program specifies that N values (complex) be read in for
POLES (I). These are the arbitrarily chosen filter poles. They should
be in order of their desirability, since the program, after determining
how many filter poles are required, takes as many as it needs, begin-
ning from the top of the list, Actually no more than n - 1 could be used
under any circumstance, so that the nt! space could be left blank,

The matrix VK is substituted for OBSERYV in order to save OBSERYV,
since the library subroutine MATS destroys input information.

The GAMMA matrix is obtained by separating the parts of the n-
vector d and placing them in adjoining columns as shown in the defini-
tions following Equation (31).  This is done with the aid of the IJDLTL
(filter arrangement) matrix which is described further under OBSMAT.

There may seem to be some confusion concerning the H and HSTAR
matrices. Note that they share storage locations by means of the
EQUIVALENCE statement. Originally read in as HSTAR in order to
represent each sensor by a single data card, the rows and columns are
then interchanged to be used in computations. When HSTAR is written
after the transposition, it is done by writing H but reversing the indices

in the WRITE statement.

*All equation numbers in this section are those of the equations in
Appendix C, "High Order Design via State-Space Considerations, "
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Subroutine ALPHAS

ALPHAS mechanizes the recursive relationship expressed by
Equations (7a) and (7b).

The single-precision inputs are replaced by double-precision
variables. The computations are performed in double precision and the
results are replaced by single precision variables for writing or storage.
The double-precision dummies are dimensioned internal to the subroutine,

INDEX(NN) is carried along only as a convenience in printout of
the ALPHA's and S-matrices. It allows the index to vary from 0 to N,
not allowed directly. This feature is probably more confusing than

necessary.

Subroutine POLYWG

The coefficient of each even power of s from s2 through sZn of
the polynomial Azn(s) is computed in turn. Coefficients of the odd terms
are zero., Beginning with the working dummy COEFF(I) set equal to
zero, the subroutine adds on the various parts as expressed in Equation
(57). The index is then increased and COEFF(I+1) is computed, etc.
Special cases (sO and SZn) are computed separately afterward.

Signs of the various terms are determined by the variables SIGNI
or SIGNJ which are, at the proper times, either +1 or -1.

The intermediate result is an nJCh order polynomial in s2 . The
n roots of that polynomial are determined by a root-finding routine. The
complex square root of each root in s2 is taken, giving the 2n roots,
half of which are in the left half plane. The complex square root function,
CSQRT, provides only one of each complex pair. POLYWG accepts
those which are in the left half plane, and changes the sign on those which
are not. The resulting roots are the desired optimal roots.

An effort has been made to make the Fortran symbols correspond

very closely with the Equations (44) and (57).

Subroutine SYNTHI

E'quations (14), (15b) and (20) are mechanized by this subroutine.
SYNTHL first computes the transpose of the controllability matrix, DSTAR.
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If it is singular, the control vector cannot be computed so the subroutine
writes '"System not controllable *--'" , Otherwise GLTL is computed
and the subroutine makes a normal return to the main program, CNTRL2,

Note that the equivalence statement is merely a comment, indi-
cating that the actual equivalence statement must appear in the main
program, AAT and BLTL, EN and AB are equivalenced as required
by library subroutines.

In order to preserve DSTAR for writing in the main program,
another matrix, AAT, is substituted to make use of the simultaneous

equation subroutine SIMEQ.

Subroutine OBSMAT

This subroutine follows the procedure outlined on page 4 of the
reference to compute the observability matrix K (OBSERV). LIDLTL,
the filter arrangement matrix, is constructed during the testing of
columns for independence. Elements are made 1 if the column is inde-
pendent, or zero if it is not, After FILTER computes d, the successive
components will be placed columnwise in the elements of GAMMA if
the corresponding elements IJDLTL are 1. Elements of GAMMA are
made zero if the corresponding element of IJDLTL is zero. The dimen-
sions of the GAMMA and IJDLTL matrices are identical.

For computational purposes, a slight refinement has been made
on the Gram-Schmidt orthogonalization procedure. Normally, each new
column to be adjoined is tested for independence by formation of the
orthogonal vector W(I). The column is independent if W(I) is not zero.
In OBSMAT a tolerance has been introduced. The magnitude of
W (WMAG) is required to be less than 10—6 times the average magnitude
of previous columns (VMAVMS®),

Library Subroutines

A brief functional description of library subroutines used in the
Automatic Design Procedure which are available on tape at Hughes

Aircraft Company follows.
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MATS. Solves simultaneous equations in the form

(A) and (B) must first be adjoined into an n by n+1 matrix (A") = (AlB).
The solution vector (X) is dimensioned separately, The input matrix

(A') is destroyed during computation,

SIMEQ. Similar to MATS except (A) is not adjoined to (B) prior to
use. Both (A) and (B) are destroyed during computation, with the solu-
tion vector (X) retuaining as ihe first coiumn of (A). For this reason

X) must appear equivalenced to (A).

—

ROOTI. A root-finding routine usually good to N=20. N+1 coeffi-
cients of a polynomial in s are input, in order of descending powers of
s. As an aid to the subroutine, an initial guess of the roots (APPR OX)
is made. If the initial guess is zero, the subroutine makes its own

first guess.

POLCO. Given the roots of a polynomial, this subroutine gives the

coefficients of powers of s, in descending order,

NUMERICAL RESULTS

Although the example shown was chosen arbitrarily to demonstrate
the design procedure, it merits some explanation, especially with regard
to the filter,

While the design procedure guarantees physical realizability, it
does not ensure practicality, as shown by the example. There are two
reasons for this: (1) the large performance index weighting factor requires
very large feedback gains; (2) since ¢> is not measured in this example, it
must be derived synthetically. In contrast, the filter designed in the
Monthly Progress Report dated 15 March 1965 was much more realistic,

where ¢ was measured and the feedback gains were much less.
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MAIN PROGRAM MPRNTS

CNTRL 2

A(1, J)

READ ALTL (1, 1)
Cl (1, )
C2 (L, J)

CWRITE program title and input data )

Find coefficients of open loop characteristic equa-
tion via SUBR . ALPHAS. Compute roots. WRITE
ALPHA(I) and OLROOT(I). Also write ELINV for
later use in FILTER program.

'

| READ Performance Weighting Factors CAPPAIl &
CAPPA2 .

v

C= KlCl + KZCZ

CWRITE CAPPAl, CAPPA2 & C(I, JD

Compute optimal coefficients (OPTALF) of closed
loop characteristic equation by POLYWG.

!

Compute control vector GLTL by SYNTH1. DSTAR,
the transpose of the controllability matrix, is
computed’in the process. WRITE DSTAR

'

Use GLTL to form closed-loop system matrix ATILDE

’

Find coefficients of closed-loop characteristic equa-
tion (ALPHAZ2) and compute resulting closed loop
roots (CLROOT).

CWRITE: ROOTS, GLTL, CLROOT)




C OPTIMAL LITTLE-G MAIN PROGRAM (5TH ORDER)

C REQUIRES SPECIAL SUBROUTINES ALPHASsMATMPY sMATPWRsORDINV»POLYWG»SYNTHL

E************************—***********************************************

DIMENSION Al595) 9 AAT(5+6)sAB(5s1)sAG(595) s ALFOPT{12)sALTL(Ss1)
ALTLTR{195)9sATP{5+5)sATR{5s5)sATILDE(5+5)ALPHA2(6)
ALPHA(6) 9A2(5+5) 9 APPROX(1Q)
BLTL{591)3C(5+5)5C1({595)9C2(545)sCLROOT(5)+sCOEFF (6]
DSTAR(595) osELINV{5s5)sEN(5s1)sGLTL(591)95(5951)
GLTLTR{195)sINDEX(6)sOLROCT(5) sOPTALF{6)sRO0OTS(10)}
s TEMP(5)

~NOoO e WN

C
33636036 36 36 36 36 0 0 9% B 306 3030 350 0300303 R R I R IO H IO K I H IR BRI RIN AR
COMPLEX OLROOTsCLROOT sAPPROXsROOTSSALFOPT
EQUIVALENCE (AATsBLTL) s (ABSEN) s (ATP»TEMP)
€K HHH I FH KT F IR IR IR KRR R K KR AN RN
-

N=5
NP=N+1
C
€33 F39 536 336 304363 363 336363 3 36 336 30 2630 H K3 IR IR KK RN R X RN
C COMMENT ON INPUT
A—- SYSTEM MATRIX
ALTL- ACTUATOR VECTOR
Cl1 AND €2 - PERFORMANCE MATRICES

[aNaNANA

READ(151)MPRNTS.
READ(192){(A(IsJ)sJ=1sN)sI=1sN)
READ{1+2)(ALTL(Is1)s1=1sN)
READ(192) ((CL(IsJ)sJ=1sN)sI=1sN)s ((C2(T1sJ)sJ=1sNVsI=1sN)
1 FORMAT(1012)
2 FORMAT (5E10.0)
C
C************* ********‘){‘*********%***************************************
C WRITE INPUT DATA
C
WRITE(253) ((A(IsJ)sJ=1sN)sI=1sN)
3 FORMAT(1H1s35Xs28H CONTROL SYNTHESIS PROGRAM 2 //// 5XsSH A-MATRIX
2 /7 (10Xe5F15e4/) )
WRITE(294) (ALTL(Is1)sI=1sN)
2 s ((CIUTIsJd)sJd=1sN)sI=1sN)s ((C2(TsJ)sJ=1sN)sI=1sN)
4 FORMAT(//5Xs16H ACTUATOR VECTOR // 5(30XsFl0e1l//2/7/
2 5Xs21H PERFORMANCE MATRICES // 8Xs1l4H DRIFT MINIMUM//
3 5(10Xs5E15e4//) / BXs13H LOAD MINIMUM //5(10Xs5E1544//))
C
C************************‘)\"**********************************************
C OBTAIN COEFFICIENTS OF OPEN LOOP CHARACTERISTIC EQUATION (ALPHAS) 8Y

C CALLING SUBR ALPHASe IF MPRNTS IS 1, THE S—-MATRICES WILL BE
C WRITTEN BY THE SUBROUTINE,
C

IF (MPRNTSeEQe1IWRITE(2514)
14 FORMAT(1H1s24H S-MATRICES OF OPEN LOOP ////)

701 CALL ALPHAS(NsAsALTL»ALPHA»Ss INDEXsMPRNTSsELINV,ENORM)
IF (MPRNTSeEQe2)WRITE(2+15) ENORM

15 FORMAT (1H1930X»8H ENORM = E15.4527H (SUM OF ABSOLUTE VALUES OF
2 16H S~ZERO ELEMENTS ///)
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C
C FIND ROOTS OF CHARACTERISTIC EQUATION (OPEN LOOP)
C

DO 102 I=1»10

102 APPROX(I)=(04904)
CALL ORDINV(NP,ALPHA)
CALL ROOT1(NsALPHASOLROOT sAPPROX sM)
CALL ORDINV(NPsALPHA)
C
CHHNR I I I H I I TR I IH I H R H I I I 3563609 3093630 56 96 36 26 36 369 396 3 96 3696 26 96 3696 36 % %

C WRITE RESULTS OF SUBR ALPHAS (ALPHAsOLROOT AND ELINV)

C
WRITE(2s5)Ns (ALPHA(I)sI=14NP) s (OLROOT(I)sI=1,4N}
5 FORMAT(/5Xs34H OPEN LOOP CHARACTERISTIC EQUATION //
2 10Xs45H COEFFICIENTS OF ASCENDING POWERS OF S ( O TOs12s2H )//
3 /10Xs6E18e5////5X243H ROOTS OF OPEN LOOP CHARACTERISTIC EQUATION
4 /// 30Xs5H REALs15X910H IMAGINARY//(20X+2E20e5//) )
C
C
WRITE(2s16)M
16 FORMAT(30Xs12520H SIGNIFICANT FIGURES ///)
9
WRITE(2,10)
10 FORMATI(1H1)
WRITE(296) ((ELINV(IsJ)sJd=1sN)sI=1,N)
6 FORMAT(31H ELINV (USED IN FILTER PROGRAM) ///5(10Xs5E20e6//))
C

CRFEHIEH SR I I N H I I T3 K 33 5038 630 93 19263 20 336 96 6 36 36 3636 3696 636 6 26 36 9626 36 36 36 36 36 36 2 6 3
C READ PERFORMANCE WEIGHTING FUNCTIONS
C
931.READ(1s2) CAPPAl,CAPPA2
IF{CAPPA1.EQe12345674} GO TO 50
DO 933 I=1sN
DO 933 JU=1sN
933 C(1»J)=CAPPAI*C1(1sJ)+CAPPA2%C2(1,J)
WRITE(2,10)
WRITE(2s905) CAPPA1»CAPPA2s ((C(I1sJ)sJ=1aN)sI=1sN)
905 FORMAT(5Xs30H PERFORMANCE WEIGHTING FACTORS //
2 / 30Xs30H DRIFT MINIMIZING (KAPPA-ROOF) E1543 /
3 / 30X930H LOAD MINIMIZING (KAPPA-TILDE) El543 /
4 ///31H WEIGHTED PERFORMANCE INDEX = C // 5(10Xs5E15e4//) )
C
CHEII NI I I NI I 30330 H T30 303303 3030 300026 06 39 30 3030 H 006 36 3696 36 3 638 %6 96 3696 93 36 36 3 3 %
C COMPUTE COEFFICIENTS OF OPTIMAL CLOSED LOOP CHARACTERISTIC EQUATION
C (OPTALF)e S-MATRICES WRITTEN IF MPRNTS IS 1.
C
CALL POLYWG(ALPHASELINVsCsCOEFFsNyROOTSs APPROXsALFOPT)
C
DO 203 IJ=1,NP
I=N+2~10
203 OPTALF(I)=REAL(ALFOPT(IJ))
DO 107 I=1sN
107 ALTLTR{1+1)=ALTL(I,1)
C
CH KT I IR I H I I I3 36353 536 33 30 3 H 6363030306306 30 0 3030 3 3630 5030 36 30 6 3636 3 396 96 36 36 31 36 36 96 96 6 3 38 % %
C FROM A,ALPHA,OPTALF AND THE TRANSPOSE OF ALTL, SUBR SYNTH1 COMPUTES
C THE CONTROL VECTOR GLTL.
c
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CALL SYNTHL1{NsAsALPHAsOPTALFSsALTLTRIATRsATPsAATSENsBLTLsABSGLTL Y
2 TEMP,A2+sDSTAR)
WRITE(2,10)
WRITE(2s7) ((DSTAR(IsJ)sJ=15sN)sI=1sN)
7 FORMAT(///23H CONTROLLABILITY MATRIX /// 5(10Xs5E20. 6//) )
C
G939 3036 0 3036 66 3 330 363 3 33 2003636 2 3030 06 3 I3 06 300 R R R R KRR

C

DO 109 I=1>sN
109 GLTLTR(1sI)=GLTL(Is1)
CALL MATMPY(ALTLsNsGLTLTRsNs15AG)
DO 111 I=1»N
DO 111 J=1»sN
111 ATILDE(IsJ)=A(14J)+AG(]5J)

(]

c***********************************************************************
C USC GLTL TO FORM CLOSED-LOOP SYSTEM MATRIX ATILDE. AGAIN USE SUBR

C ALPHAS TO FIND ACTUAL CLOSED-LOOP ROQTS ACHIEVED BY CONTROL
C VECTOR.
C
IF(MPRNTSEQe1IWRITE(2423)
23 FORMAT(1H1s26H S-MATRICES OF CLOSED LOOP ////)
C
CALL ALPHAS(NsATILDESALTLsALPHA2+Ss INDEXsMPRNTSSELINVsENORM)
C
IF(MPRNTSEQe2)IWRITE(2915)ENORM
WRITE(2+10)
WRITE(2s8) ((ATILDE(IsJ)sI=1sN)sJ=1sN)
8 FORMAT(/// 47H A-TILDE-TRANSPOSE (ATT USED IN FILTER PROGRAM) /
2 //5010X95E2066//) )
C

C***********************************************************************

c
CALL ORDINV(NP,ALPHA2)
CALL ROOT1(NsALPHA25CLROOT » APPROX M)
WRITE(2510)
WRITE(2513) (ROOTS(I)sI=1sN)s (GLTL(I51)sI=15N)s(CLROOT(I}sI=1sN)
13 FORMAT( //5Xs26H OPTIMAL CLOSED-LOOP ROOTS /// 30Xs5H REALs10Xs
1 10H IMAGINARY //5(20X22E2045//) //
2. 5Xs50H COMPUTED FEEDBACK CONTROL VECTOR (TERMS 1 THRU N) ///
3 5(35XsE1545//)// 5Xs45H CLOSED LOOP ROOTS ACHIEVED BY CONTROL VEC
4TOR /// 5(20Xs2E2045//) )
C
C**********************%****************ﬁ*******************************
c
GO TO 931
50 WRITE(2+51)
51 FORMAT(1H1)
CALL DUMP
STOP
END
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5

Z

MAIN PROGRAM

Z,
o

1
FILTER N

e 1! I

ALPHA
ELINV
READ ATT
GLTL
HSTAR

” WRITE Input. Before writing HSTAR, eliminate
zero rows.

Compute observability matrix OBSERV by SUBR.
OBSMAT. If not observable, ICOLM is set equal

to 100.
Is system observable? O
v YES
IRPl = ICOLM WRITE: "SYSTEM
IR = IRPI-1 NOT OBSERVABLE"
»(READ N values of POLES) CORE DUMP, END
YES
False pole .12345677? CORE DUMP, END
y NO

Take first IR poles on list and multiply to get
coefficients of filter denominator (BETA)

v

Compute BAGSUM

Solve (OBSERV) x (DL) = (BAGSUM) for (DL)

e

Convert DL-vector into GAMMA-matrix

et

( WRITE GAMMA as list of filter parameters )

¢

Compute poles and zeros of filter and WRITE

v

Compute poles of resulting closed-loop system and
WRITE.

]
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C FILTER (5TH ORDER SYSTEM)

C REQUIRES SUBROUTINES OBSMAT, MATMPY

C

CHHHHH T I SIS RN NN R

DIMENSION A2(555)5A3(555)3A4(595)sALFSYSI11)sALPH(11)sALPHALG6)

2 APPROX(5)sATGI(591)3ATT(5+5)
3 BAGSUM(5)sBETA(6)sBETAL(6)s DL(5)s ELINVI(555)s GAMMA(555),
4 GAMMAL(5)sGAMSA({11),GAMSAH(11)sGLTL(S5s1)s H{5s5)sHPLALILL)
A HSTAR(545)sFILZRO(S)
5 1JDLTL(545) sNGLIST(5)sNRROOT(10)sOBSERV(5+5) sPOLE(5)sPOLES(5)
6 SAH{555)9SAH1(5) »SUMI5)s U(555)»VKI56) sVNXM(595)sW(5)
C
COMPLEX APPROXsBETA1lsFILZROsNRROOT,POLEsPOLES
EQUIVALENCE (HsHSTAR) s (POLES»FILZRO)
C
C AR TR A K KM 633 36 6 I3 3T I3 0 963 T3 39 0TI I NI I I I I R
N=5
NP =N+1

I 36926 3 300 3 3630 363638 330 H 38 36 30 3 33036 30 3630 36 3030 3650 3003 T3 0 J0H F I I3 I I I I I N RH
C COMMENT ON INPUT -

C ALPHA- COEFFICIENTS OF OPEN-LOOP CHARACTERISTIC EQUATION
C ELINV- AN OUTPUT OF A PROGRAM WHICH COMPUTED THE CONTROL VECTOR
C ATT- TRANSPOSE OF THE A-TILDE MATRIX (FROM CNTRL1 OR CNTRLZ)
C GLTL- CONTROL VECTOR
C HSTAR- ROWS({CARDS) REPRESENT SENSORS. THERE MUST BE N CARDS»
C SOME BLANK IF LESS THAN N SENSORS.
C
READ(1s1) (ALPHA(I}sI=1,4NP)
READ(193) ({ELINVIIsJ)sJd=1sN)sI=14N)
READ(1s3) ((ATT(IsJ)sJ=1sN)sI=1sN)
READ(1s3) (GLTL(Is1)sI=1,N)
READ(143) ((HSTAR(I9J)sI=1sN)sJ=1sN)
1 FORMAT(6E10.0)
3 FORMAT(5E10,0)
C

C %MK 33663 36 I 309636 96 36 3 336 3 3606 236 3638 330306 I 300 36 338 3 36 3336 I I HIE K I IS
C WRITE INPUT

C
WRITE(296 ) ((ATT(IsJ)sJ=1sN)sI=14N)
6 FORMAT(1H1»20Xs37H DESIGN FILTER TO APPROXIMATE DESIRED
2 26H SYSTEM POLE CONFIGURATION //// 25H A-TILDE-TRANSPOSE MATRIX
3 //7/(10X95F18e6/7) )
WRITE(2+7) {(GLTL(Is1l)s»I=1sN)
7 FORMAT(//26H G-LITTLE (CONTROL VECTOR) /// (30XsF20e6//) )
C
C DISCARD ZERO-ROWS OF HSTAR
JJ=0
DO 401 J=1sN
HSUM=0,
DO 102 I=1sN
102 HSUM=HSUM + H(IsJ)
IF({HSUM.EQeOs) GO TO 401
Jd=JJ+1
DO 103 I=1»sN
103 HITsJJ)=H(TsJ)
401 CONTINUE
M=JJ
C

WRITE(2,10)
10 FORMAT(1H1)
WRITE(2+8)
8 FORMAT(13H HSTAR MATRIX //)
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DO 51 I=1sM
STO SUBRLS+Ms 1
18 FORMAT (/1 Xs7HSENSOR I1+5Xs7(F1543) )
51 WRITE(2+18) Is(HSTAR(JsI)sJ=14N)
WRITE(2519) (ALPHA(I}sI=1sNP)
19 FORMAT(////50H COEFFICIENTS OF OPEN LOOP CHARACTERISTIC EQUATION
2 26H (POWERS OF S FROM O TO N) ///20Xs6E17.5)
WRITE(299) ((ELINV(IsJ)sJ=1sN)sI=14N)
9 FORMAT(1H1s13H ELINV MATRIX /// 5(20XsS5E18e7//7) )
C
CHEHE 33 333 R I I 2330 T 33030 K36 3 I 363638 30636 3636 36 96 9 00306 36 6 0 K36 96 696 36 36 36 36 96 N3 ¥

C COMPUTE OBSERVABILITY MATRIX (OBSERV)e IF SYSTEM IS NOT OBSERVABLE,

C ICOLM IS MADE EQUAL TO 100. SUBR OBSMAT ALSO KEEPS TRACK OF
C GAMMA POSITIONS VIA THE M BY ICOLM MATRIX IJDLTL.
C
CALL OBSMATI{NsATTaMsHIA243A3sVNXMsSUMsUsWaNGLISTs IUDLTLsOBSERV
2 ICOLM)
WRITE(2511) ((OBSERV(IsJ)sJ=1sN)sI=1,sN)

11 FORMAT(1H1,21H OBSERVABILITY MATRIX /// (10Xs5E20e6) )
IF(ICOLM.EQ.100)GO TO 55
C
C ICOLM (IF NOT 100) DETERMINES NO. OF FILTER POLES REQUIRED
C
A2 AR Sl e R Y IR SR I R SRR R R TRy L T )

IRP1=TCOLM
IR=IRP1-1
C
402 CONTINUE
C

C FFTEF I3 3 3 336 36 3 36 3090 3 3630 3 3 3 36 36 36 36 3636 363 9 36 3 3 36 6 336 6 3 H I 343 I 36 6 36 T 3655 I I I I 36 3 3% 36 I3 I I I I I3 W I ¥

C READ N CHOICES OF DESIRED FILTER POLES., PROGRAM WILL USE AS MANY AS
C REQUIREDs STARTING FROM TOP OF LIST.
C
READ(1s1) (POLES(I)sI=1,4N)
POLERE=REAL(POLES(1))
C
C FALSE FILTER POLE MAY BE USED AS DATA TO CAUSE CORE DUMP.
IF(POLERE«EQ412345674) GO TO 450
C
CHERFIRFHERRE R AR R ERE AR ERRE AR XL R RN R HRH AR R RN AR H A ARFRRRRRRURE R RRE %R
C OBTAIN COEFFICIENTS OF FILTER DENOMINATOR (BETAS)
C
DO 105 I=1,IR
105 POLE(1)=POLES(I])
CALL POLCO(IRy140sPOLESBETAL)
DO 107 1J=1,1IRP1
I=IRP1-1U+1
107 BETA(I)=REAL(BETAL(IJ))
C
CH M H NI NI RN SRR KRR RE R IR KA TR TON IR R
C PUT OBSERV AND BAGSUM IN FORM SUITABLE FOR SIMULTANEOUS EQUATION SUB-
C ROUTINE (MATS)e SOLVE (OBSERVIX(DL)=(BAGSUM) FOR DLe.

DO 109 J=1sN
109 BAGSUM(J)=0,
DO 110 I=1,N
DO 110 J=1sN
110 A4(15J)=0.
DO 111 I=1sN
111 A4(I,1)=1.
DO 405 I=1sIRP1
CALL MATMPY (A4 sNsGLTLs1sNsATGI)
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DO 112 J=1sN
112 BAGSUM(IJ ) =BAGSUMI(J) +BETA{I)¥ATGI(Js1)
CALL MATMPY(ATTsNsA4sNsNyA3)
DO 114 K=1sN
DO 114 J=1sN
114 A4(KsJ)=A3{KsJ)
405 CONTINUE
DO 113 I=1>»N
DO 113 J=1sN
113 VK{IsJ)= OBSERVI(IsJ)
DO 115 I=1sN
115 VK(IsN+1)= BAGSUMI(I)
CALL MATS(VKsDLsNs 1)
C
R R e S TS T T S T
C THE T1JDLTL MATRIX IS USED TO CONVERT THE VECTOR DL INTO A MATRIX GAMMA
C
DO 117 I=1.1C0LM
DO 117 [=1sM
117 GAMMA(1sJ)=0.
JJd=1
DO 406 J=1sICOLM
DO 406 I=1sM
IT=1JDLTL(TIsJ)+1
GO TO (4065119)s11
119 GAMMA(1,J)=DL(JI)
305 JJ=JJ+1
406 CONTINUE
(C:******* 336 39 3 I 36 I I I3 SE I3 3 3 I 36 3 96 36 36 I I 3 JEI 36 36 I W34 36 I 3 I I 3 I T IE I I I 36 I I I 3 I A I 3K
C WRITE THE PARAMETERS OF THE MULTIPORT FILTER AS COEFFICIENTS OF Se
C
WRITE(29s12)MsIR
12 FORMAT(1H1»50X9s18H FILTER PARAMETERS //51Xs12s14H - PORT FILTER /
2 /// 55H POLYNOMIAL COEFFICIENTS IN ASCENDING POWERS OF S (0 TO»
3 12+2H ) /7 )
DO 407 I=1sM
WRITE(2s13) Is(GAMMA(I 4J)sJ=1,1C0OLM)
13 FORMAT(///5Xs144 NUMERATOR NO4s12 //5Xs10E12.4)
407 CONTINUE
54 WRITE(2s14) (BETA(I)sI=1,IRP1)
14 FORMAT(///5Xs194H COMMON DENOMINATCR//5Xs10E1244)
WRITE(241C)
C
C COMPUTE POLES AND ZEROS OF THE FILTER AND VWRITE.
WRITE(2,17)
17 FORMAT(50Xs13H FILTER RCOTS // }
DO 412 JJJ=1sM
DO 141 I=1sN
141 APPROX(1)=(04ss0a4)
JP=0
DO 411 I1J=1sICOLM
1=1COLM+1-~-1U
GAM1=GAMMA(JJJ, 1)
GAM2=ABS({GAMI1)
IF(GAM2 e LE« 00001 e ANDaJPFEGeC) GO TO 411
JP=UP+1
GAMMA1 ( JP)=CGAM1
411 CONTINUE
NA=JP~-1
IF(NASLEL1)GD TO 412
CALL ROOT1(NAsGAMMAL sFILZRO»APPRCX 4MSIG)
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21

412
22

C

FORMAT(///5Xs14H NUMERATOR NOo. 12/ {20Xs2E20.6) )

WRITE(2921) JJJs(FILZRO(J) sJ=1,NA)
CONTINUE

FORMAT(////5Xs19H COMMON DENOMINATOR /
WRITE(2+22)(POLE(I)sI=1,IR)

(30X92E2066)

)

C %3336 33 K 363 390 I 3636 IE I 330 I I 3 336 23 36 3 6 I I I I 36 U W M I 36 I 36 J 36 K 3 I ;%

C USING THE COMPUTED FILTERS

C

121

123

125

127

129
C

NSAH=N-1

NGAM=TICOLM-1
NGSP1=NSAH+NGAM+1

CALL MATMPY(ELINVsNsHsMyN,SAH)
DO 121 I=14NGSP1
GAMSAH(1)=0,

DO 129 1I=1,M

DO 123 K=1,sICOLM

GAMMA1 (K)=GAMMA (] sK)

DO 125 J=1sN
SAH1(J)Y=SAH(Jy 1)

DO 127 I1=1sNG5P1
GAMSA(I1)=0.

I11=11-NSAH

JGAMIN = MAXO(I1,1)
12=NGAM+1

JGAMAX= MINO(I2,11)

DO 127 JGAM=JGAMIN,JGAMAX
JSAH=TI+1-JGAM

GAMSA(IT1)=GAMSA(TI)+GAMMA1(JGAM) *SAH1 (JSAH)

DO 129 I1=1sNGSPI
GAMSAH(IT)=GAMSAH(II)+GAMSA(11)

DETERMINE THE POLES OF THE CLOSED LOOP.

C*******************************%*******%*********#******************%**

133

135

137

139

15
C

NPRP1=N+IR+1

DO 133 I=1sNPRP]

ALFSYS(1)=0.

I1=1-N

JMIN=MAXO(I1s1)

I2=1R+1

JMAX=MINO(I2,1)

DO 133 J=UMIN,s JMAX

K=1+1-J

ALFSYS(I)=ALFSYS(I) + BETA(J)*ALPHA(K)

NPR=N+1IR

NGSP2=NGSP1+1

DO 135 I=NGSP2,NPRP1
GAMSAH(1)=0.

DO 137 I=1sNPRP1
ALPH(T)=ALFSYS(I1)~GAMSAH(T)}
DO 139 I=1,NPRP1
J=NPRP1+1-1

HPLA(TI)=ALPH(J)

CALL ROOT1(NPRsHPLAsNRROOT s APPROXs1SIG)

WRITE(2+15) (NRROOT(I)s1=1sNPR)}

FORMAT (1H1+20X925H RESULTING POLE POSITIONS///(15Xs2E20e6//)

)

(G222 E ST EE T Yy Y R RS R RS 3 R R R T I T
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55
16
450

GO TO 402

WRITE(2416)
FORMAT(/////22H SYSTEM
CONTINUE

WRITE(2910)
CALL DUMP
STOP

END

NOT OBSERVABLE)}




SUBROUTINE ALPHAS

Input: N, AS, ALTLS, MPRNTS
Output: ALPHAZ, SS, INDEX, ELINV,

ENORMS
v

(A and ALTL)

Replace single precision variables with double Pprecision

v

Set SA equal to the Identity matrix (double precision)

*

- J = J+1

[
i
—

<

NN = N-J+1

»u

(S) = (A) x (SA)

>

TRACE = Main diagonal of (S)

| s

ALPHA(NN) = -TRACE/J

v

main diagonal of (S).

Add these elements of ALPHA to corresponding element of

v
INDEX(NN) = NN- 1
v
Set (SA) = (S),
(SS) = (S)
v
C If MPRNTS = 1, WRITE (SS) j
v
Has SO been computed ?
¥ NO YES
(ROW) = (S) x (ALTL) ALPHAZ (N+1) = 1. 0
L 4

INDEXN = INDEX(NN)

v

Convert ALPHA to single precision by
setting (ALPHAZ) = (ALPHA)

v
ELINV(INDEXN, I) = ROW(I, 1) Last row of ELINV = ALTL |
I=1, N . 4

J<N

ENORM = Sum of absolute values of
elements of Sq

RETURN




COMPUTE ALPHAS WITH DOUBLE PRECISION ARITHMETIC (INPUT,OUTPUT SePe)

C REQUIRES SPECIAL SUBROUTINES MATMPY,DVATMP

L R R T S R T R St L b b b h A b Rt
SUBROUTINE ALPHAS(NsASsALTLSsALPHAZ »S5 s INDEXsMPRNTSsELINV s ENORMS)

C
DIMENSION AS{NsN)sALTLS(Ns1) sALPHAZ (N)sSSINsN} s INDEXIN)
2 ELINVINsN)»
3 A(555) sALTLI5s1) sALPHA(6) 35(5s5)3SA(555) sROWI(5,1)
C
C COMMENT ON DIMENSIONING - ALTHOUGH DIMENSIONED FOR N=5, THE WRITE
C STATEMENTS ARE GENERAL FOR N LESS THAN 25.
c
DOUBLE PRECISION AsALTLsALPHA$SsSAs TRACE sDFLOTJsROW s ENORM
C

R e R S ki
C IF MPRNTS=1ys S-MATRICES ARE TO BE WRITTEN
GO TO (1s2)sMPRNTS
1 IPRNT=1
IF(NeGT«10) IPRNT=2
IF(NeGTe2C) IPRNT=3
2 CONTINUE

C GFT INPUT INTO DOURLE PRECISION
DO 171 1=1sN
ALTL(Is1)=ALTLS(Ts1)

DO 101 J=1,sN
101 A(lsJ)=AS(1sJ)
DO 3 I=1sN
DO 3 J=1N
3 SA(I9J)=04D0
DO 4 K=14sN
4 SA(KsK)=1403

C

C 3303 3656 J 33 330 T3 33 33 36 K3 H S K ISR R I K I K K3 I N AR

C USE LEVERRIER ALGORITHM TC COMPUTE SUCCESSIVE ALPHAS AND S-MATRICES

C (N=1 THRU N}

C
DO 42 J=1sN
NN=N-J+1
CALL DMATMP(AsNsSAsSNsNsS)
TRAZE=CWDO
DO 6 K=14¢N

6 TRACE= TRACE + S(KsK)
FLOTJ= FLOAT(J)
DFLOTJ=FLOTJ
ALPHA(NN) = =TRACE/DFLOTJ
DO 8 K=1yN

8 S(KsK)=3(KsK}+ ALPHA(NN)
INDEX (NN)=NN-1
DO 10 I=1sN
DO 10 JJ=1sN

10 SA(T,JJ)= S(IsJdI)
DO 173 I=1sN
DO 103 JD=1sN
103 SS(1.JD)=S5(14dD)

C

C IF MPRNTS=1sWRITF S-MATRIX
GO TO(514405)sMPRNTS

51 WRITF(2s12) INDEX(NN)

12 FORMAT(///5Xs7H INDEX= T13//)

22 DO 25 K=1sIPRNT
JMIN=(K=1)%10 + 1




13
25
14
405

THE

aEaNaN YA

31

32
42
C

C***********%************%******%**%******%

' e

MAX=K#*10

JMAX=MINO (N sMAX)

WRITE(2+13) JUMIN,JIMAX

FORMAT (5X3s8H COLUMNS,s1345H THRUs I3//)
DO 25 I=1sN

WRITE(2s14) (SS(IsJIM) s IM=UMIN,IMAX)

FORMAT {10X310F12,47/)

CONTINUE

ZERO-TH S-MATRIX SHOULD BE EQUAL TO ZEROs IT IS COMPUTED AS A

CHECK ON ROUNDOFF ERROR.
IS ENDED,

AFTER 1T

TFLINDEX(NN))&4245424321

CALL DMATMP(SsNsALTL s1sNsROW)
INDEXN=INDEX (NN}
DO 32 1=14N
ELINVIINDEXN,I)=
CONTINUE

ROW(Is1)

C GATHER LOQSE ENDS

C

105

43

44

100

ALPHAZ (N+1)=1.0

DO 105 1=1,N
ALPHAZ(I)=ALPHA(1)

INDEX (N+1)=N

DO 43 I=1sN

ELINVINsI)= ALTL(Is1)
ENORM=O [

DO 44 I=14N

DO 44 J=1,N
ENORM=ENORM+DARS (S(14J})
ENORMS=ENNRM

IF (MPRNTSeEQe1IWRITE (24100)
FORMAT (1H1)

RETURN

END
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SUBROUTINE POLYWG

Input: N, ALPHA, ELINV, C,
APPROX

Dummy: COEFF

Output: ROOTS, ALFOPT

'

NX2 = N*2
Define NP1 = N+l —»| Compute coefficients of SZn and s°
NMI1 =

ol 1

Set COEFF(I)= 0., I=1,NPI
Compute PART2 of coefficient of
SIGNL = +1 g{Zn-2)

1 Add to &,

SIGNI = - SIGNI
Set summation limits on j v

l C WRITE COEFF(I), I1=1, NP1 )

Compute &i contribution (ith v
component subscript I+1)

Find roots of Nth order polyno-
mial having the computed coeffi-
cients. These are roots of a
polynomial in s, WRITE ROOTS

YES (1), I=1, N

Take complex square root of
Compute first part of €, each root in s¢ to get roots in s.
(PART Z2A) b Discard roots in right half plane.
l WRITE ROOTS(I), I=1, N
Compute second part of € . l
(PART 2B) *
Multiply remaining roots to get
coefficients of characteristic
Add to & ; term computed polynomial. WRITE ALFOPT (I),
previously I=1NP
! !
I =141 RETURN




SUBROUT INE POLYWG(ALPHA,ELINV9C,COEFF,N,ROOT59APPROX9ALFOPT)
C

C REQUIRES SPECIAL SUBROUTINE ORDINV
C

C***********************************************************************
C THIS SUBROUTINE IS A MECHANIZATION OF EQUATIONS (44) AND (57) OF THE

C PAPER ON HIGHER ORDER SYSTEM DESIGN BY BASS AND GURA.
C***********************************************************************

G
DIMENSION ALPHA(I)’COEFF(I),ELINV(NoN)9C(N’N)!ROOTS(Z)QALFOPT(I)

C
C NOTE ON DIMENSIONS -(1) INDICATES CALLING ROUTINE TO BF DIMENSIONED
C (N+1) (2) INDICATES (N#2),
C
COMPLEX ROOT S s APPROX JALFOPT
C
C***********************************************************************
NX2=N*2
NP1=N+1

DO 101 I=1sNP1
101 COEFF(1)=0,

SIGNI=1,

NM1=N-1

*************************************************}*********************

COMPUTE EVEN COEFFICIENTS OF THE POLYNOMIAL DELTA(2N). ODD COEFFIC=-
[ENTS ARE ZERO.

aNaNaYaNaNa!

DO 430 I =1,NM1

SIGNI= -SIGNI

JMIN=1

JMAX= 1

IX2 = 1%2

IF L IX2eGTeN )} JMIN= IX2-N+1

[aXa!

COMPUTE ALPHA-HAT TERM (PART 1)

SIGNJ=+1,
JEVN=UMIN=-2% (UMIN/2)
IF(JEVN.GTW0) SIGNJ=-1,
DO 105 JP1=JUMIN,JMAX
SIGNJ=~-SIGNJ
JS=1X2~-JP1+2
105 COEFF(I+1)=COEFF(I+1)+ALPHA(JP1)*ALPHA(JS)*SIGNJ
COEFF(I+1)=2.*COEFF(I+1)+SIGNI*ALPHA(I+1)*ALPHA(I+1)
C**************************************************%********************
IF{1.EQsNM1) GO TO 430
JMIN=1
IFOIX24GToNM1) JMIN=IX2-N+2
JEVN=JUMIN=2% (UMIN/2)
SIGNJ=1,
IFCJEVN.GTW0) SIGNJ=-1,
PART2A=0,
C
C COMPUTE EPSILON TERM ( 2 PARTS)
DO 110 JP1=JMIN,JIMAX
SIGNJ=~S1IGNJ
ANSZO-
JS=IX2-JP1+2
DO 107 JJ=1,N
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DO 107 KK=1sN
107 ANS=ANS+ELINV{JP1sJJ ) *¥CIJJHsKKI¥ELINV (JS5sKK)
110 PART2A=PART2A + SIGNJ*ANS
PART2B=0.
DO 120 JJ=1sN
DO 120 KK=1»sN
120 PART2B=PART2B + ELINV{I+1,J0)1*C(JJsKKI*¥ELINV(I+1,KK)

C ADD EPSILON TERM TO ALPHA-HAT TERM
COEFF{I+1)=COEFF(1+1) + 2.%PART2A + PART2B*SIGNI
430 CONTINUE
C
C
C***********************************************************************
C
C 2N-TH AND ZERO-TH TERM ARE COMPUTED SEPARATELY
C
C
C COEFFICIENT OF S*%2N -
NEVN=N-2%*(N/2)
COEFF(N+1)=-1.
IF(NODD«GT4O)COEFF(N+1)=1,
COEFF(1)=0.
DO 124 JJ=1sN
DO 124 KK=1,sN
124 COEFF(1)= COEFF(1) + ELINV(1sJJ)*C(JJyKK)HELINV(1sKK)
COEFF{1)= COEFF(1) + ALPHA(l)*ALPHA(1)}
C
C{*l*********i{************************l*****%****************i*********
C PART 2 OF COEFFICIENT OF S¥¥(2N-2)
C
SIGNJ==COEFF (N+1)
C PART2=0.
DO 126 JJ=1sN
DO 126 KK=1sN
126 PART2 = ELINVINsJII*C(JJSsKKIXFELINV (NsKK)
C
C ADD PART2 TO PART1 ((N-1) TERM)
COEFF(N)=COEFF(N)+SIGNJ*PART?2
C
C***********************************************************************
C WRITE HEADING FOR INTERNAL POLYWG WRITE STATEMENTS.
WRITE(2,11)
11 FORMAT(1H1 15Xs46H SUBROUTINE POLYWG PRINTS COEFFICIENTS OF EVEN

2 35H POWERS OF S (CPD POWERS ARF ZFROY, /
3 20X»50H N ROOTS OF POLYNOMIAL FORMED 8Y EVEN COEFSe ONLY,
4 23H N LeHePe ROOTS OF 2NTH / 20X,18H ORDER POLYNOMIAL,
5 52H AND THE COEFFICIENTS GENERATED BY THE LasHePe ROOTSe
6 )
C
C WRITE COEFFICIENTS COMPUTED ABOVE.
C
WRITE(2,12)
12 FORMAT(///7// 20Xs31H POWER OF S COEFFICIENT /7 )
DO 51 T=1sNP1
NNX2=2%1-2
51 WRITE(2913)NNX2sCOEFF(I)
13 FORMAT (24X s13512X3E1548)
C

CHRITHIH I I NI NI 323336 390036060633 36 00T R 03 330 MBI IR N RN AN
C
C FIND ROOTS OF POLYNOMIAL HAVING THE N+1 COEFFICIENTS PREVIOUSLY COM-
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C PUTEDs THESE ARE THE ROOTS OF THE FORM (S%%2 ~ ROOT),

CALL ORDINVI(NP1sCOEFF)
CALL ROOT1(NsCOEFFsROOTSyAPPROX M)
WRITE(2s14) (ROOTS(I})sI=1sN)
14 FORMAT(////29H ROOTS FROM EVEN COEFFICIENTS /
2 //7(20X92E2047) )
C
e e R R T TR TR R SOV
C TAKE THE COMPLEX SQUARE ROOTS (OF THE PREVIOUS ROOTS) WHICH ARE IN THE
C LEFT HALF PLANE. THESE ARE THE OPTIMAL CLOSED-LOOP RCOTSe.
C
DO 404 I=14N
ROOTS(I)=CSQRT(ROOTS(1))
ROOTRE=REAL{ROOTS( 1))
IF({ROOTRELT&NL)GO TO 404
ROOTS(1)=-ROOTS(1)
404 CONTINUE
WRITE(2,10)
10 FORMAT(1H1)
WRITE(2515) (ROOTS(I)sI=1,sN)

15 FORMAT(10Xs30HROOTS WITH NEGATIVE REAL PARTS // (2E207))
C

C***********************************************************************
C MULTIPLY THE ROOTS TO GET THE COEFFICIENTS OF THE DESIRED CLOSED-LOOP
C CHARACTERISTIC POLYNOMIAL.
C
CALL POLCO(Ns1,05RO0TSSALFOPT)
WRITE(2516)
16 FORMAT(///50H COEFFICIENTS OF POLYNOMIAL GENERATED BY ROOTS IN ,
1 15HLEFT HALF PLANE //10Xs10HPOWER OF S 26Xs11HCOEFFICIENT /
2 40X+4HREAL 14Xs9HIMAGINARY // )
NP=N+1
DO 53 I=1,NP
NMI=NP-1
53 WRITE(2s17)NMISZALFOPT(I)
17 FORMAT(14Xs13512X+2E20.8)

RETURN
END
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SUBROUTINE SYNTHI

Input: N, A, ALPHA, DSIRD, ALTLTR

Dummy: ATR, ATP, AAT, EN, BLTL, AB,
TEMP, A2

Output: GLTL, DSTAR

Compute DSTAR by n-

D" ={(a, Aa, ..., A 1

a)

Compute BLTL {b) by solving
D*b = e .
where e = (0, 0, 0, ...0, 1)"

Compute GLTL by
n ~ *.i-1
g = - z (al‘l-al"l)(A ) b
i=1
RETURN




SUBROUTINE SYNTH1(NsAsALPHASDSIRDsALTLTRsATRsATP sAATsENsBLTL sAB,

2 GLTLsTEMPsA2,4,DSTAR)
C
C EQUIVALENCE (AATsBLTL) s(ENsAB)s(ATPTEMP)
C
DIMENSION A(NsN) s ALPHA(2) s ALTLTR(1sN) sAAT(NsN) sATP{NsN)sATR(NsN) »
2 AB(Ns1)»sA2(NsN)sBLTLI(N»1)sDSTAR(NIN) sDSIRD(2)sEN(Nsl)s
3 GLTL{(Ns1) s TEMP(N)
C
C COMMENT ON DIMENSION - (2) INDICATES DIMENSION OF N+1 IN MAIN PROGRAM,.
C
C*********************%*************************************************
DO 1 I=14N
DO 1 J=1sN
ATP(1+J)=0.
1 ATR(IsJ)=A(Js])
DO 2 I=1,N
2 ATP(Isl)=1e
C

R L g L S 1 L LTy ey
C COMPUTE DSTAR (TRANSPOSE OF CONTROLLABILITY MATRIX)e. AAT I35 SET EQUAL

C TO DSTAR TO AVCID DESTROYING DSTAR IN THE SIMULTANEOUS EQUATION
C SUBROUTINE (S5IMEQ).
C

DO 7 K=1sN

DO 101 I=1sN
DSTAR(Ks1)=0,
DO 101 J=1sN
101 DSTAR(KsI)=DSTAR(KsI)+ALTLTR(1sJ)*ATP(Js1)
DO 3 I=14N
3 AAT(KsI)=DSTAR(K,s 1)
CALL MATMPY(ATPsN»ATRsNsNsA2)
DO 4 I=1eN
DO 4 J=1,N
4 ATP(I4J)=A2(1,4J)
7 CONTINUE
C
C***************************%************%********%*********************
C SOLVE (DSTAR)X(BLTL)=(EN) FOR BLTL
C
DO 8 I=1yN
8 EN(Is1)=0,
EN(Ns1)=1,
SCALE=1.0
CALL SIMEQ(NsNs1sAATsENySCALE s TEMPyMM)
C
C THE SOLUTION VECTOR BLTL IS THE FIRST COLUMN OF AAT (SEE COMMENT ON
C EQUIVALENCE STATEMENT)
C
GO TO (402552553) sMM
52 WRITE(2s14)
14 FORMAT(////42H UNDERFLOW OR OVERFLOW IN SUBROUTINE SIMEQ)
GO TO 402
53 WRITE(2+15)
15 FORMAT(////51H SYSTEM NOT CONTROLLABLE (DSTAR-MATRIX IS SINGULAR))
402 CONTINUE
C
C**************************************%*********%**********************
C COMPUTE THE CONTROL VECTOR GLTLe THIS IS THE PRIMARY RESULT OF THIS
C SUBROUTINE AND OF THE MAIN PROGRAM,
C
DO 9 I=1sN
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10

11

12

13

GLTL(Is1)=0.
DO 10 I=1sN
DO 10 J=1sN
ATP(1+J)=0.
DO 11 I=1sN
ATP(Isl)=1e
DO 13 K=1sN

CALL MATMPY(ATPsNsBLTLs1sNyAB)

DO 12 T=1sN
GLTL{TI»1)=GLTL(I»1) +

{ALPHA(K)=DSIRD(K))*AB(Is1)

CALL MATMPY(ATPsNsATRsNsNsA2)

DO 13 I=1sN
DO 13 J=1»sN
ATPIIsJ)=A2(1sJ)

RETURN

[=S 1%




SUBROUTINE OBSMAT

Input: N, ATT, M, H
Dummy: A2, A3, VNXM,
SUM, U, W, NGLIST

Output: IJDLTL, V, 1COLM

v

Set initial values

v

VNXM + next M possible

v

Unit vector U(I, JV)
= W(I)/ WMAG, I1=1, N

v

Compute average mag-
nitude of columns of V

VMAVM6 = ,00001%

columns of V (Column index = | (Av. Mag.)
V) ‘
ICOLM = ICOLM + 1 Have N columns of V
Set IV =0 been computed ?
vV =JV-1 I
gs M IV = IV+1 YES More columns
> in VNXM ?
Does IV appear on NGLIST? RETURN
YES * NO
NO
More columns left in VNXM ? > (A3) = (ATT) x (A2)

v

IJDLTL (IV,ICOLM) = 1
(Filter arrangement matrix)

v

JV = JV+l

v

v

Has (R)': been raised
to the Nth power ?

1NO YES

Next column of VNXM taken
tentatively as next column of V

(A2) = (A3)

v

First column of V?

1YES lNO

Compute mag-

Compute orthogonal

nitude of V vector W(J), and
VMAVMG6 = its magnitude,
.00006%¥VMAG WMAG

Compute unit
vector U({l, 1)

Check independence -
Is WMAG =z VMAVM6?

v

Set ICOLM = 100
(Non-observable system)

P *NO

Add IV to reject list, NGLIST

!

RETURN

YES
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C OBSERVARTLITY MATRIX
SUBROUTINE OBSMATI(NsATT sMeHsAZ2ZsA3 3 VNXMsSUMsUsWINGLISTsIUDLTL

2 Vs ICOLM)
DIMENSION ATT(NoN)sHINsN) sA2(NsN)sA3(NaN) sVNXMININ) sU(NIN)y
2 TUDLTLUINSN)sVINsN) s SUMIN) sW(N) s NGLIST(N)

C********1‘(-**%************%***%**%**%%***%***%***************************
C
NMM=N~-M
DO 4 I=1sM
DO 4 J=1sN
& TJUDLTL(IsJ)= O
C
C*********************%**********)\"****************%**********************
C TAKE FIRST M COLUMNS (NXM H-MATRIX)
C
DN 5 I=14N
DO 5 J=1N
AZU19J)=0s
DO 7 I=1,sN
7 A2(1s1)=1,
Jv=0
IATP=1
VMAGSM=0,
VMAYME=0,
NGLIST(1)=0
MLIST=1
1CoLm=n

Ut

C
3 J 333 3 333 30 K 5 3333 IO IR I 33 B K I I NN
9 CALL MATMPY (A2 sNsHsMsNsVNXM)
[COLM=TCOLM+1

Iv=0
C
CHH AR R KK H KKK H MK IR T 303036 3696 K 2633050 9 36 0 I 0 363696 36 3 36
C COMPARE COLUMN INDEX WITH NeGeLISTs ELIMINATE COLUMNS ON LISTe.
C
10 Iv=1V+1

DO 12 I=1sMLIST
IFINGLIST(I)-IV)I12510912
12 CONTINUE
IFCIV="=1)14+28+35
14 CONTINUE
IJDLTLUIVsICOLM)Y =1
g***********************************************************************
C TAKE A COLUMN AT A TIME
C
Jv=Jv+1
DO 15 I=1sN
15 VIIsJV)=VNXM(T,41V)
IF(JV-11355110416
110 VMAGSQ=0
DO 111 I=1sN
111 VMAGSQ=VMAGSQ+V (1 JVI*V(IsJV)
VMAG=SORT(VMAGSQ)
VMAVME = ,0CO0N06#VMAG
DO 112 I=1sN
112 ULTsJV)=VIIJV)/VMAG
GO T0 10
C
C 3 FH MR IR WK I 33T H I I I 623 230 I I3 KN
C COMPUTE ORTHOGONAL VECTOR W
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16 JYMi=Jv-1
DO 19 J=1sN
SUM{J)=0,
DO 18 I=1sJVvM1
DO 18 K=1»N
18 SUMIJ)=SUMUU)+UIK» 1) ¥V (K s JVI*U(JIs ]}
19 W(JD)=VI(JsJV)Y=SUM( J)
C
C***********************************************************************
C IF MAGNITUDE OF W IS ZEROSREJECT COLUMN AND TRY NEXT
C
WMAGSQ =C,
DO 21 I=1sN
21 WMAGSQ = WMAGSQ + W(I)#*%2
WMAG = SQRT{WMAGSQ)
IF(WMAG = VMAVMB) 23,24,24
23 MLIST=MLIST +1
NGLIST(MLIST)=1V
1JDLTLLIVICOLM)Y=0
Jv=Jv-1
GO TO 11
24 CONTINUE
DO 25 I=1,N
25 UtIsJdVy= WII1)/WMAG
VMAGSQ=0.
DO 26 I=1sN
26 VMAGSQ = VMAGSQ + VI{IsJV)I*¥V(]4JV)
VMAG=SQRT(VMAGSQ)
VMAGSM= VYMAGSM+VMAG
VMAVMG6= 000001 %*VMAGSM/FLOAT(JV)
IF(JV-N)27540,35
27 IF{IV-M)10,28,28
C
C******************************** 636 336 3 I 3 W 3 363 30 34626 3 3 3 I 33630 3 3 M3 I 3696 3 X 3 XK
C COMPUTE NEXT POWER OF A-TILDE-TRANSPOSE
C
28 CALL MATMPY(ATTsNsA2sNsN,A3)
IATP=1ATP+1
IF(TATP-N=1)29432,35
29 DO 30 1=1sN
DO 30 J=1,sN
30 A2(I15J)=A3(1+J)
GO 70 9
32 1COLM=100
34 GO TO 49
35 WRITE(2+36)
36 FORMAT(/////27H ERROR IN OBSMAT SUBROUTINE)
40 RETURN
END
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SUBROUTINE DMATMP(AsSNRsBsNCsN»C)
DIMENSION A(NRsN) »B(NsNC)sC(NRyNC)
DOUBLE PRECISION AyB,C

DO 1 I=1,sNR

DO 1 K=1yNC

C(IsK)=0,D0

DO 1 J=1N
CUIsK)=CUIsKI+A(T»J)*¥B(JyK)

RETURN

END

SUBROUTINE MATMPY(AsNRsBsNCsNsC)
DIMENSION A{NRsN)sB(NsNC)sCINRsNC)
DO 1 I=14NR

DO 1 K=1yNC

Cl1sK)=0,40

DO 1 J=1,N
CeIsK)I=CUIsKI+A(I s J)%¥B(JyK)

RETURN

END

SUBROUTINE ORDINVI(NsV)
DIMENSION VIN)
NHALF=N/2

DO 1 I=1sNHALF
N1=N+1-1

A=V (N1}

VINL)Y=V (D)

VII)=A

RETURN

END




SYMBOL DICTIONARY

Fortran
Symbol

Mathematical
Equivalent,
if any

Definition

Used in

A, nt

A

nxn matrix which
defines the auton-
omous set of linear
differential first
order equations of
the form

x = Ax,
where x is an

n-vector

CNTRLZ
SYNTH]1
ALPHAS

AAT(I, J)

A dummy matrix
which is set equal to
DSTAR to make use
of the simultaneous
equation subroutine
SIMEQ in solving
D*b = el
for b (BLTL)

SYNTH1

AB(I, 1)

(A%)i b

Used in the compu-

tation of g.

SYNTHI1

AG(L, J)

ag

Used to find A by
A= Atagk

CNTRLZ

.{_

Except as otherwise noted, subscripts run from 1 to N
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Fortran
Symbol

Mathematical
Equivalent,
if any

- Definition

Used in

ALFOPT(I)

Coefficients of
optimal closed-loop
characteristic equa-
tion as computed by
POLYWG., They are
complex but the
imaginary part is
non-zero only due to
computing error.
They are also in the
wrong order. (See

OPTALF)

POLYWG
CNTRLZ

ALFSYS(I)
I=1, N+R+l

Coefficients of
A(S)Ap - (S) in
Eq. (28b)

FILTER

ALPH(I)
I=1, N+R+1

Coefficients of

AZn-v in Eq. (28b)

FILTER

ALPHA(I)
I=1, N+1

i=o,n

Coefficients of the
characteristic equa-
tion of the plant,
A(S), in ascending
powers of S from

0 (I=1) to n (I=N+1).

CNTRLZ2
FILTER
SYNTHI

ALPHAS

ALPHA Z(1)
I=1, N+1

Dummy variable
used in ALPHAS to
indicate single pre-
cision (ALPHA is
double precision in

ALPHAS)

ALPHAS
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Mathematical

Fortran Equivalent,

Symbol if any Definition Used in
ALPHA?2(I) ai Coefficients of the CNTRLZ2
I=1, N+1 i=o, n closed loop char-

acteristic equation
A(S).
ALTI(L 1) a n-vector which is CNTRLZ2
called the actuator
vector. From the
equation
X = Ax + ay
ALTLS(I, 1) Dummy used in ALPHAS
ALPHAS to indicate
single precision,
ALTLTR(1,1) ak Transpose of ALTIL, CNTRL2
SYNTH]1
APPROX(I) Guess at roots to CNTRL2
assist ROOT1 sub- FILTER
routine (library). POLYWG
ATGI(I, 1) (A1 g | Intermediate vari- FILTER
able used to com-
pute d (DL)
ATILDE(I, J) A Analogous to A, CNTRL2
except it defines the
closed loop system.
ATP(I, ) Dummy matrix used SYNTH]1

to represent suc-
cessively higher

powers of A"
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Mathematical

Fortran Equivalent,

Symbol if any Definition Used in
ATR(L, J) AF Transpose of A SYNTHI1
ATT(I, J) (A" Transpose of the CNTRL2

closed-loop system FILTER
matrix
A1, J) Dummy matrices
A3(1, T)
etc.
BAGSUM(I) A (A) g | Intermediate variable | FILTER
=Qr used to compute d
BETAC(I) s Coefficients of S in FILTER
I=1, R+!} common denom-
inator of filter
(Ap_y)-
BLTI(I, 1) b Vector resulting from| CNTRLZ
the solution of SYNTH!1
D'b=e"
c(l, J) c The weighted per- CNTRI1.2
formance index, POLYWG
CLROOT(I) Achieved closed CNTRLZ2
loop poles
Ci(L, 1), The performance CNTRL2
C2(1, J) indices of

c =K1C1 + KZCZ




Mathematical

Fortran Equivalent,

Symbol if any Definition Used in
COEFF(I) Dummy array used to| POLYWG
I=1, N+1 compute the optimal

coefficients ALFOPT
DL(1) d The coefficients of FILTER
the filter numerators
arranged consecu-
tively. See definition
following Eq. (31).
DSIRD(I) a; Coefficients of the SYNTH]I
I=1, N+1 i=o, n desired closed loop
characteristic equa-
tion. Corresponds
to OPTALF(I).
DSTAR(I, J) D" The transpose of the CNTRIL2
controllability SYNTH]1
matrix, D
ELINV(L, T) -1 Inverse of L. ALPHAS
L~1=(s;a,Sza,..., | CNTRL2
n2)* FILTER
EN(I, 1) en [ 0] SYNTH]1
0
n_
e —
'1 -nth
| " 1 element




Fortran
Symbol

Mathematical
Equivalent,
if any

Definition

Used in

ENORM

Error norm-sum of
the absolute values of
the elements of the
final S-matrix com-
puted (Sy) by
ALPHAS. Used as a
check on computa-

tional accuracy.

ALPHAS

FILZRO(I)

Used repeatedly to
compute and write

the filter zeros.

FILTER

GAMMAC(I, J)
I=1, M
J=1, ICOLM

]

Each of M rows of
GAMMA represents
the coefficients of
increasing powers of
s of each of M filter
numerators.
1=1,2,...,I1COLM
corresponding to

o) 1 T
S 9 S 3e¢¢.8

FILTER
OBSMAT

GAMSAH(I)
I=1, N+ICOLM+1

Coefficients of s in
2nd term of Eq. (28b),

M
2, Ayle)
i=1

n
z (h1 . Sja) sJ-1
j=1

FILTER
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Mathematical

Fortran Equivalent,
Symbol if any Definition Used in
GLTI(I, 1) g Control vector, from| CNTRL2
the equation FILTER
x=Ax+a¥, SYNTH1
where ¥ =g . x
GLTLTR(1,1) g% Transpose of the CNTRLZ2
control vector
H(I, T) H The sensor matrix. FILTER
Each of M sensors OBSMAT
represented by a
column of H.
HPLA(I) The elements of FILTER
I=1, N+R+1 ALPH(I) in reverse
order
HSTAR(I, T) H Transpose of H FILTER
ICOLM Number of columns FILTER
in GAMMA(I, J). OBSMAT
Tells maximum
number of zeros of
filter (ICOLM-1).
Used as an indicator
of non-observability
by setting equal to
100,
IJDLTIAI, J) Filter arrangement OBSMAT
I=1, M matrix. Elements are| FILTER
J=1, ICOLM either 1 or O.
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Fortran
Symbol

Mathematical
Equivalent,
if any

Definition

Used in

INDEX(I)
I=1, N+1

Used to allow print-
out of subscript zero,
which is not allowed

in Fortran.

ALPHAS
CNTRL2

IPRNT

Determines printing
format in ALPHAS,
Value depends on
size of array to be

printed.

ALPHAS

MPRNTS

Option to print
S-matrices of Subr.
Alphas decides by
input value of
MPRNTS. Printing
occurs if

MPRNTS = 1, does
not if MPRNTS = 2.

ALPHAS

Order of the plant
characteristic

equation.

All

NGLIST(I)
I=1, MLIST

List of rejected col-
umn numbers. Used
to compute observa-

bility matrix.

OBSMAT

NRROOT(I)
I=1, N+R

Closed loop poles of

system with filter.

FILTER




Fortran
Symbol

Mathematical
Equivalent,
if any

Definition

Used in

OBSERV(I, J)

K

Observability matrix
computed by
OBSMAT. Dummy
matrix in OBSMAT
corresponding to

OBSERYV is V.,

FILTER

OLROOT(I)

Open loop poles

CNTRIL2

OPTALF(I)
I=1, N+1

The real parts of
coefficients
ALFOPT, with order

corrected.

CNTRL2

POLE(I)
I=1, IR

The common filter
poles. R poles taken
from an arbitrary
list of N provided as

input.

FILTER

POLES(I)

The N poles available
as common filter

poles.

FILTER

ROW(L, 1)

Dummy array used in
ALPHAS. ROW is a
column matrix, but

is 2 row in ELINV.

ALPHAS

S(I, J)

The numerator trans-
fer matrix. Succes-
sive values of the
matrix are computed
as a part of computing
ALPHA(I).

CNTRL2Z2
ALPHAS
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Mathematical

Fortran Equivalent,
Symbol if any Definition Used in

SA(, J) Dummy variable used | ALPHAS
in ALPHAS to
replace S.

SAH(T, I) hi. Sia Coefficients of open | FILTER

J=1, N loop numerators

I=1. M

SCALE A scale factor used SYNTHI1
in the library sub-
routine SIMEQ.

SUM(I) Dummy array used OBSMAT
by OBSMAT in
determination of
column independence.

TEMP(I) Temporary storage SYNTH]1
required by library
subroutine SIMEQ.

TRACE tr Sum of the elements ALPHAS
on the main diagonal
of a matrix,

U(I, J) The columns are a OBSMAT

series of unit vectors
formed successively
by OBSMAT in
determination of

column independence.




Mathematical

Fortran Equivalent,

Symbol if any Definition Used in
VK(I, J) A dummy matrix used | FILTER
I=1, N to represent OBSERV
J=1, N+1 and BAGSUM in the

library subroutine
MATS.
VNXM(I, T) Ay g Dummy matrix used |OBSMAT
I=1, N successively in
J=1, M OBSMAT.
W(I) The orthogonal vector |OBSMAT

computed by
OBSMAT. Recom-

puted successively.
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A=MATRIX

-0.0322

-0.

0.0693

=0.

0.7620

ACTUATOR VECTOR

(a)

PERFORMANCE MATRICES

DRIFT MINIMUM

0,1040E~-

0.6240E~

-0,

0.5800E~

-0,

"LOAD MINTMUM
0.1610E
0.
-0.
0.56N0E

o0

02

03

03

01

e1

§-~-MATRICES OF OPEN LOOP

CONTROL SYNTHESIS PROGRAM 2

~0.,0194
-0.
=0.
=-0.

-0.

-0.
-0.
-0,
0.
17.5

(8 0rCi)
0.6240E-03

0,3750E-03

-0,

0.,4100E-03

-0.

(’Cv or C’L)

=0,
-0,
-0,
-0,

-0.

=0.
=0.
0.
-0,

-0,

=0.
=0,
-0,
-1,

=0,

1,0000
1,0000
-0,
0,

-0,

=0.0211
=0,
=0.4740
=0.

~1760.5000

0.6800E-03

0.4100E-03
=0.

0.4450E-03

=0.

0.5600E 01
=0.
»0.
0.1610E 01
=0,

-0,

-0,

-0.

-0.
1.0000

-3.3600

An ogtion m Subrodline ALPHAS can prunt oadh S-mafeoc os
it s compafed.  The malee i sforage 1 then replaced

with the next malen , éc.

INLEx= 4 (54)

COLUMNS 1 THRU 5§
0.3360E 01 ~0.1940E<01
-0. 0.3392€ 01 0.1000E 01
0.6930E-01 =0. 0.3392E 01
0. 0. 0.
0.7620E 00 =0. -0.

0.1000F 01 =0.2110E-01

=0,

s0.,4740E-00
0.3392E 01
=0,1760E 04

s0.
=0.
s0.
0.1000E 01
0.3220€-01

5-42




INLEXz 3 (53)
COLUMNS 1 THRU 5

0.1760E 04 =0.6518E=01
0.6930E-01 0.1761E 04
0.2328E-00 =0.1344E=p2
0.7620€ 00 =0.
~0. =0.1478E=01

IncEx=s 2 (S,)
COLUMNS 1 THRU 5

~0.1350E-12 «0.3415€ 02

0.2328E-00 0.5647E 02
0.1216E 03 -0.4517€=02
=0. =0.1478E=01
-0.1137E-12 0.

INCEX= 1 (S.)
COLUMNS 1 THRU 5

=0.1269E-09 0.2673E=14
0.1216E 03 «0.1216E 03
~0.9356E~14 =0.2360E 01

~0.1137€-12 0.

0.3341E
0.3392€
0.1761E
“0.
0.7620E

0.1760E
0.1761E
0.5670E
0.7620E

=0.1478E~

=0.3415E
0.5670E

01
01
04

00

04
04
02
00
01

02
02

=0.1269E~09

=0.1478E~

01

0.2791E-12 0.1776Es14 «0.2162E~12

a

s

0.5449€ 00 =0,
0.4740E-00 =0.
0.1609€ 01 =0.
0.3889E-01 0.
0.5670E 02 =0.

0.1583E 01 =0.
0.1609E 01 =0.
0.5620E-01 =0.
0.2315E-00 <0.
0.1216€ 03 0.

0.3090E-01 0.
0.5620E~01 =0.
0.5517€E-13 0.
0.4517€-02 0.
0.2360E 01 0.

INCEX= 0 (Se) on m&wd«on ot compu{’afcon error

COLUMNS 1 THRU 5

0.3029E-09 0.2463Ec11
~0.9356E-14 (0.2988E=09
~0.8741E~-11 0.1853E=15
0.2791E-12 0.1776Ec14
0.1025E-09 =0.3932E=14

OPEN LOOP CHARACTERISTIC EQUA

=0.1269E~
=0.1269E~
0.2988E~
=0.2162E~
0.9130E~-

TION

09
09
09
12
12

COEFFICIENTS OF ASCENDING POWERS OF

0.23598E 01 -0,12164E 03

S

ROOTS OF OPEN LOOP CHARACTERISTIC EQUATION

REAL

0.,19691E-01

0.23625E-00

~0,2881%E-00

~0,16800E 01

=0.16800E 01
7 SIGNIFICANTY FIGBURES

0.3777e-11 0.
0.5517€-13 0.
0.8598E~-10 <0.
0.5333E-09 0.
0.3166E~06 =0.

(0705

0.56473E

IMAGINARY

o,
0.
0,
0,41925& 02

«0,41925E 02
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2110E-01

4740E-00
3220E«01
6930E=01

4740E=00

4740E=00
1673€-01
6930E-01
1344E=02

9196E=02
1673E-01
SJ89Ew13
1344E=02
72436~-10

The very small magm*udcs o(: {L\a
elemenfs of the S, matrix indicale
4875E«13 '

5389E-13 the benelit of using double erecision

11366212  aridhmetic w tas subroutine.
7243E~10
3671€E=09

02 0,17605E 04 0.,33922E 01 0.10000€ 01

A(s) = €5+2.3984+1760.55% + S06.47 8% — (21.64S + 2.36



ELINV (LSED IN FILTER PROGRAM)

0.160555E-00
-0.827604E 01

-0.292019€=00
-0.827604E 01

0.940875€=12
~0,2920159E<00

0.234736E-01
-0,120998€ 01

0.126468E-08
0.234736E-01
-0.120998E 01
0.562212E 00

0.174600E 02

«0.368406E-00 -0. -0,827604E 0% 0,562212E 00
-0. -0. -0. 0,174600E 02
-0, ~-0. -0, -0,

Euny = L = (%4, S,a, ~-,an]*

This mafrix 15 computed each time but ¢ only used here.

With a List of kappa’s , the computation and printout
done to this pont would net be repeated.

PERFQORMANCE WEIGHTING FACTORS

DRIFT MINIMIZING (KAPPA~ROOF) -0.
LOAD MINIMIZING (KAPPA=TILDE) 0.100E 06
WEIGHTEL PERFORMANCE INDEX - C
0.1610E 06 -0, 0. 0.5600E 06 0.
0. -0. 0. =0. 8.
0. 0. 0, 0. 0.
0.56N0E 06 -0. 0, 0.1810E 06 0.
0, 0. 0. 0. 0.
cC = 2 6 r 2C

, SUBROUTINE POLYWG PRINTS COEFFICIENTS OF EVEN POWERS OF § (0DD POWERS ARE ZERD),
N ROOTS OF POLYNOMIAL FORMED BY EVEN COEFS, ONLY, N L.H.P, ROQTS OF 2NTH
ORDER POLYNOMIAL, AND THE COEFFICIENTS GENERAYED By THE L, W.P, ROOTS.

POWER OF S COEFFICIENY

0,84655929E 04
«0.22416455E 08
0.16891450E 09
«0.5217997S€ 08
«0.35095707€E 04
«0.09999999E 01

OoO®OAaN O

-

ROOTS FROM EVEN COEFFICIENTS

0,378731%5€E-03 0.
0.1382508E-00 0,
0.3097846E 01 0,

=0.1756404E 04
~0,1756404E 04

0.,7007595E 04
“0.7007595E 04




ROOTS WITH NEGATIVE REAL PARTS

=0,1946103€-01
=0.3718209E-00
-0,1760070€ 01
~0.5228745E 02
~0,5228745E 02

-0,
-0,

-0,

~0.6701030E 02
0.6701030E 02

COEFFICIENTS OF POLYNOMIAL GENERATED BY ROOTS IN LEFT HALF PLANE

POWER OF S COEFFICIENT
REAL IMAGINARY
5 0.09999999E 01 0.
4 0,10672624€ 03 -0,
3 0.74500308E 04 0,15258789E~04
2 0.15614923E 05 -0.10967255E-04
1 0.50289033E 04 ~0.18477440E-04
0 .92008653E 02 -0,
CONTROLLABILITY MATRIX  ( Actua”ﬂ the transpose, D*)
0. 0, 0,
-0. -0, -0,
-0.368406E-00 0. -0.827604E 01

ﬂ\@ dd’crmmant o£ {L\ls ma‘trlx vaust b@ non - zero

-0.702633€ 01 ~0.827604€ 01 0.277820Ek 02

0.672588E 03 0.277820E 02 0.144760E 05

8.

0.174600E 02
~0.586856E 02
-0.305412¢ 05
0.208899€ 06

if the s%sTcm is to be controlled .

0,174600E
-0.586656E
~0.305412E
0.205899E
0.530760E

& were 1ero,

02
02
05
06
08

an aHemp‘t WOU\& St\“ bl W\CKdG to COVV'IPLL&‘C t[’\e CUY\‘trO( VCOTOF, Liu-t LtS J(.erms woul& be {,L‘ie comp(ﬂa’t(onal

?/(lu.:va{e_nt OL lﬂf\hl-t-bj.

S<MATRICES OF CLOSED LOOP

INCEX= o
COLUMNS

0.1067E 03 «0.1940E=01

1 THRU S

0.1000E 01 =0.2110E~01 =0.

-0. 0.1067E 03 0.1000€ 01 =0, °0.
0.6930E~01 =0. 0.1067E 03 =0.4740€-00 =0.
0. 0. 0. 0.1067E 03 0.1000E 01
0.3649E 04 0.6909E 04 0.3229E 05 <0.7446E 04 0.3220Ee01
INCEX= 3
COLUMNS 1 THRU &

0.7446E 04 =0.2070E 01

0.1067E 03 =0.2725E 01 ©0.2110E=01

0.6930E~01 0.7450E 04 0.1067E 03 <0.4740E-00 =0.

0.7394E 01 =0.1344Ew02 (.7450E 04 =0.5059E 02 <0.4740E=00
0.3649E 04 0.6909E 04 0.3229E 05 0.3366E 01 0.3220Ee01
0.2238E 04 0.1517E 03 0.1160E 05 =0.1562E 05 <0.6930E=01
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INCEXs 2

COLUMNS 1 THRU 5
0.1531E 05 =0.2902E 03 0.6763E 04 =0,5056E 02 =0.4740E=00
0.7394E 01 O0.1561E 05 0.7450E 04 s0.5059E 02 s0.4740E=00
-0.1214E 04 =0.3275E 04 0.3168E 03 =0.,1784E 01 »0.1673E-01
0.22386 04 0.1517E 03 0.1160E 05 =0.7393E 01 =0.6930E~01
0.4788E 03 -0.5222E 03 0.1537& 03 =0.5029E 04 0.1344E-02
INCEX=® ¢
COLUMNS 1 THRYU 5
0.327%5E 04 -0:35725 04 =0.2902E 03 0.9811E 00 O0.9196E~02
~0.1214E 04 0.1754E 04 0.3168E 03 =0,1784E 01 ©0.167368-01
0.3183E-11 =0.9201E 02 =0.4184E-09 =0,1345E-10 0.2155€E~-12
0.4788E 03 «0.5222E 03 0.1517€ 03 0.1434E-00 0.1344E02
0.1179€-06 =0.1199Ee06 0.2679E-05 s0.9201E 02 0.2014E-08
iINCEX= O
COLUMNS 1 THRU 8
0.7800€E-07 0.310;5-10 0.13536+09 0.9819E-11 0.4219E«13
0.3183E-11 0.7795E«07 =-0.4184E~09 w0.1345E~10 0.2155E~12
0.7369E-09 0.4017E=09 0.9034E-07 0.5229E-09 «0.3887E-11
0.1179E-06 =0.1199E=06 0.26796«05 ©0,5528E-07 0.2014E«08
-0.2169E-0% 0.1579E«04 -0.1051E-03 0,2200E-04 «0.1910E=06
A=TILDE-TRANSPOSE (ATT USED IN FILTER PROGRAM) (K*)

-0.322000E-01 -0. 0,693000E=01 -0, 0.364936E 04
-0.194000E-01 -0. -0, -0. 0.690904E 04
0.100000E 01 0.100000E 01 -0, -0, 0.322896€ 05
-0.211000E-01 -0, -0,474000E+00 -0. -0.744631E 04
-0. -0. -0. 0,100000E 01 -0.106694E 03

OPTIMAL CLOSED-LOOP ROOTS

REAL IMAGINARY
~0,19461E-01 -0 ” “
! ( Same as “roots with ncqatnve ceal parls .
-0.37182E-00 -0, Restated for convenience .
-0.17601E 01 =0,

-0.52287€ 02 «“N,67010E 02

~0.52287E 02 0,67010E 02

COMPUTED FEEDBACK CONTROL VECTOR (TERMS 1 TWRU N)

(9)

0.20897€ 03
0.39571E 03

8.18493E 04 208.97 & + 395.11 ¢ + 1849.3% —325.45p-5.92 p

b=

~0.32565E 03

~0.59484E 0%




CLOSED LOOP ROOTS ACHIEVED BY CONTROL VECTOR

-0,19461E-01 0,

-0.37182E~-00 0, These roots should match the optlma\
closed loop roots above. Qoundoll

“0.17601F 01 0. ercor accounts for the dillerences.

~0,52288E 02 0,87007E 02

~0.52288E 02 =0,67007E 02



DESIGN FILTER TC APPROXIMATE CESIRED SYSTEM POLE CCNFIGURATICN

A-TILDE-TRANSPLSE MATRIX (A from
~C.032200
-0.0154C0
1.ccceco
-0.0211€0
0.
G-LitILE (CCNTRCL VECTCR) (Ferom
HSTAR MATRIX
SENSLR 1 -0.
SENSCR 2 -c.

CCEFFICIERTS CF CPEN LCCP CHARACTERISTIC EQUATICH (PIWERS

C.73%98F 01

ELINV MATRIX (L' from CNTRLZ)

0.1€G5950E-CO
~2.0z7604CkE C1
-0 3CE4060E-CO
Ca

C.

eNTRLZ )
-0.
-o.
1.000000
-0.

~0.

CnTRL2
208.9¢9999
395,706969

1849.355994
~325.66CC00

~5.9180C0

1.0C0

~C.12164E 03

-0./257201G8CE-CO

-N.827604CE 01

0.0693C0C

-0.4740CC

-0.

OF S FRCM 0 TC

0.56413E 02

0¢940SCLOE-12

-0.262C150E-CC
-0.82760408 C1
-Ce.

-0.

0./347360€6~-01

-0.1206980E 01

0.5622120E 00

0.1746CCUE 02

-0.

-0. 36494359985
5909.0499848
-C. 32289.695951
~7446.5CC0CH
1.CN00CO -106.688999
-0 -9, (Sewses &)
1.C04 -0. (Senses §)
N)
J.17605%€E 04 Da33922F N1

e12647001-04
U.236473608-01
-0.1209980E 01
0.562212¢t 0u

.1746000E N2

(. 1000GF O



CBSERVABILITY MaTRIX

-C. ~0. -0 -0
c.1CCcCot C1 -0. -0. -0.
-C. -0. 0.10CCCOE Cl -0.
~Ce 0.100000F O1L 0. 0.
-Ce. -0. Ce 0.100C00E Ol

1 formation of this malrix 15 possible , (the subroufine 0BSMAT checks column ndependence

the s»lsJIcm s observable and a realizable filter can be derved.
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C.693000€E~01

0.

0.
-0.,474000€-00
-0.
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FILTER PARAMETERS
2 - PORT FILTER

POLYNOMIAL GOEFFICIENTS In ASCENDING POWEKS OF 5 (0 To 2

re——— T T T T T T T T T T N
NUMERATOR M0, 1 | |
U.18/1E 07 O0.8681F 7 (.1408E 08 4 l 140810t 1(5+308)% +.194% ] l,
| (s+2)(s+4) i
+
| i
NUMERATOR 200, 2 I W
! + |
0.4746F 07 0.1236F 0> 0. 8 1256w 0 { s+284) |
| ' (s+2) [5+4] |
| |
|
COMMU~N DRNUMINATUR !__________________.___J
C.AUUHE Nu  0.6U0NF G1  0.1ulUE D1
FILIER RCOTS
NUMFERATOR NN, 3
-u,308200E=-00 L.1944E5E-00
-0.306200E-00 «l,194465€E-00

The single cost n Numeralor No. 1 s obtainable dtrecﬂ% from tne coehbicients above , hence

13 ot compufed or printed .

COMMUN DENUMINATOR
-G,200000E 01 -l
-y,4nyuvlue us -t

HESULTING POLF PUSITIONS
<

~U.1y4A1UF-01 U

ML poles except those added ‘o(ﬁ the filter should

be m the same positions as i} all variables

-0,3/182vE=0C 0,
had been measured.

-0.,1/76u09E Ul 0.

L.4D6643E 12 0.485572€ 02 ] These poles should be near the Lilter poles.
The fact that they are net , and thal they

R

G.4bEpa3E CZ -0,485%572E (g are uns‘ablc, mdlncoi@s Thal the gll{u‘
poles should be chosen Surther from the

~.5¢2B4BE 2 0.670110F 02 o oxis.

-0.522848E 02 -0.670110F 02




PCLYNCMIAL CCRFFICIENTS [N ASCENCING PCwERS (OF S

NUMERATECR N, 1

CeG234F ©7 C.434/F CE 0.7122€ 08

NUMERATCR NC. 2

0.3143E 08 -0.2794F CE 0. B ——t—{ 27.94010¢

CUOMMCN CENCMINATCR

0.8CCCE N5 G.6COUF 02 0,10005 0L

NUMERATOR ANC, 1
~0.305183t~00
-0.305183C-00

COMMCN DENCNMINATCR
-0.2CCC00E 03
-0.400000E 03

RESULTING PCLE POSITIONS

-0.164€10€-01 0.
-0.3717131E-00 0.
-0.176C34E 01 O.
~0.525%66E 02 0.
~0.444116E 03 0.

~0.522¢€42€ 02

-0.522€42E 02

FILTER PARANETERS

2 - PCRT FILTrr
(0 T 2 )
r T T = /M
| |
| |
(s+ 305)% + .191% ]

S N BTV AL Lok o |
¢ | : (s+200) (s+400) |
.

|

|

! (S:le) o ‘ h

| (s+200) (S+400) |
| |
o _

FILTER RCCTS

0.67010%F 02

-0.670105E C2

C.l71114E-CC
~Cel51114E-CO

~C.
-C.

These two poles are stable and nearer

to the lilter poles | olamonstraltmcj the

aS&ij‘t\CITL& proper\j oc tl’\@ dzswan proccdurc.



6. RESULTS OF COMPUTER FLIGHTS

The control system synthesis and the simulated flights were
accomplished for a five-dimensional model based on the rigid-body
motions with perfect sensors and actuator. The equations of motion

for this model are

@ = -0.0322a - 0.0194¢ + ¢ - 0,02110 (6-1)
¢ = 0.0693a - 0,474p (6-2)
B =0.762a - 1760.58 - 3.36p + 17. 54 (6-3)

The two quantities, besides control, appearing in the criterion integrand

are drift acceleration

.. T+T_-D N, T,
e ¢t et P x (6-4)

and bending load

ale sts
b4

L:l.26a+4.4;3=q2- X (6-5)
For the flights, lateral drift was actually computed by integrating
z:V(¢+aW—a). (6-6)

It will help the interpretation of the results of the simulated flights

to review the design procedure very quickly. The control is of the form

‘-P:g‘X:gla+g2¢+g3é’+g4‘3+g5{3’ (6-7)

*Numerical values were derived from NASA -supplied documents.
**See Section 3.
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.

where the g; are determined using the design programs so as to mini-

mize the criterion integral

/m<’x‘zz + E( L7>Z + ¢2>dt , (6-8)

10

where % and k are weighting factors chosen by the designer. The fol-
lowing restrictions should be kept in mind: (6-8) is minimum for initial
condition errors in the absence of winds; because of the term L,]JZ (required
for stability) there is always some amount of drift minimization and load
minimization called for, since y is a linear combination of all the states
while drift and load are linear combinations of states, also. Because of
the latter restriction, ® and k are not directly related to the minimiza-
tion of drift and load, respectively, in a straightforward manner. Indeed,

the control can be written in the form

y=az+al+y , (6-9)
so that (6-8) becomes
> 2 < 2 2
] [(’K‘ +2)z° + 283%ZL +(—Kl—4 + a>L + 2(AZ + ALY + ¢t Tt ,  (6-10)
o 10

where 2, 3, and §' depend implicitly upon ¥ and k.

The optimal control design was carried out for a wide range of
values of ¥ and k. The resulting control systems were "flown' in the
five-dimensional model of (6-1), (6-2), and (6-3) for various conditions,
i.e., no wind and the wind shown in Figure 6-1, linear control (¢ = g - x)
and bang-bang control (¢ = sgn g *+ x), small initial offset (¢ = 0.1°,
¢ = 0.5°) and large initial offsets (a = 1°, ¢ = 5°). Figures 6-2 through
6-9 are typical of the computer output.* The simulations were run on

the IBM 7094 of the Hughes Scientific Computing Department. The

*In Figures 2-9 Kl = % and K2 = K.
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|- 75 M/SEC

WIND VELOCITY

— L | P 1 (SECONDS)

[} 10 20

(t =0 AT MAX Q1 Figure 6-1. Typical wind profile.
program was coded in Fortran IV and employed a straightforward
differential equation integration scheme available as a library sub-
routine,

One fact was evident from the computer traces — all the controllers
exhibited the characteristics of "minimum drift control' in the sense of
Reference 1; i.e., "Z goes to zero as soon as the transient oscillation
around the center of gravity dies out.' *In fact, Z goes to zero as soon as
the wind velocity becomes constant, '"Minimum drift" feedback gains in
the sense of Reference 1 are never obtained, since all the states are fed
back. Another fact is also easily deduced from the computer results —
the drift performance is rather insensitive to ¥ and . Figure 6-10
shows drift as a function of these quantities for linear control and small
initial offsets (for the larger initial offsets just multiply by 5). Note
that drift decreases slightly as X increases, as expected. For the runs
with wind present, the differences in drift performance are not readable
from the output plots; the common value for linear control and small
offsets is 800 meters. It is also interesting that both linear and bang-
bang control resulted in nearly identical drift performance for all the
conditions investigated.

The peak bending load is much more sensitive to parameter and
control changes. Figure 6-11 shows peak load for the cases used for
Figure 6-6. Note that L has a maximum between x = 0 and % = 105. It
is obvious from (6-10) that the criterion is more sensitive to 3 than w

for small values of k; it is not 'surprising, then, that the peak load is not

*Reference 1. E.D. Geissler, "Problems in Attitude Stabilization
of Large Guided Missiles, " Aerospace Engineering, Oct. 1960, p. 24,
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a monotonically decreasing function k, but is ultimately so. Since (6-5)
shows that L is largely dependent upon B, the peak load must depend
upon the type of control chosen. For linear control in the absence of
wind the peak load is linearly related to the initial offsets, while the
peak load for bang-bang control is much less sensitive to initial condi-
tions. However, after the initial response transients died out, the
""long-term' (5-10 seconds) behavior of the bending load was reason-
ably close for both controls. In the presence of wind, the situation is

much more complicated (as Figures 6-2 through 6-9 show). The
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peak load is now a function of initial offset, control, and wind pro-
file. Since the available simulation time was severely limited, there is
insufficient data on which to base any realistic conclusions about the
load behavior in the presence of wind.

The final series of flights consisted of a seven-dimensional model
(including one bending mode) using the five-dimensional control vector
discussed above for the case k = ¥ = 0, including the effect of the wind.

The equations used were

a = -0,0322a - 0.0194¢ + ¢ - 0.0211B + & (6-11)
¢ =0.0693a - 0, 4748 (6-12)
B=0.762a - 1760.5p - 3.36p - 0.0357L + 17.5¢  (6-13)
£=15.2p -0.0036% - 0.006% . (6-14)

The performance of booster control system was not much affected by the
inclusion of the bending term; the peak bending load was reduced some-

what, and the drift was unaffected.
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7. DISCUSSION AND SUGGESTIONS

In Section 1 a 26-pole model of a large flexible vehicle was
described. The model presented there can be used for extensions of
the initial synthesis procedures described in Section 5, which were
based on a 5-dimensional model, or for checking the stability and
performance of closed loop systems for which the control law was
derived for a lower dimensional model. It is felt that by adequately
describing the dynamics of the vehicle, more reliable information about
the stability of the actual vehicle may be obtained. In particular, the
problem of blending sensor outputs so as to accurately identify the
"state'' of the system is intimately related to the existence of a com-
plete model of the vehicle. This is an area of research which has
recently received attention at Hughes Aircraft Company.

We propose to couple an accurate model of the vehicle with Kalman
filtering and the filtering technique of Hughes Aircraft Company described
in Section 3 to synthesize a system which would be immune to the noise
introduced by the sensors, be insensitive to the higher bending modes
of the vehicle, and minimize a given performance index. Hughes
Aircraft Company has recently obtained results along these lines which
are presently being evaluated.

The linear design procedure described in Section 5 may be
extended to a higher dimensional model with little difficulty, but even
for the existing procedure there are some areas of investigation which
should be explored. First it should be determined how good the control
law developed for a 5-dimensional model would perform when used for
the 26-pole model, This has already been done for a 7-pole model.
Also the possible improvement of performance gained by going from a
5-dimensional model to a 26-dimensional model should be explored to
see if the added complexity is justified when the disturbance is the worst
wind.

The nonlinear feedback law described in Section 4 seems to yield
a minimax type of response when the system is subjected to an initial

condition. This can be further checked by starting near the origin and
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flooding the state space to determine actually how good the performance
is. It should be noted that the number of products of state variables
increases factorially with the order of the model. It would, therefore,
be worthwhile to investigate the performance of a high order system
subjected to disturbances when the nonlinear control law has been
designed for a low order plant, There is good reason to believe that
the resulting system will be stable since feedback, in general, com-
pensates for ignorance about the actual plant dynamics.

In the area of stability of closed loop system the results of Sec-
tions 3 and 4 indicate that the control lawe derived there ave globally
asymptotically stable when there is no actuator saturation. For systems
where there is actuator saturation the resulting systems are still stable
in a well-defined, computable neighborhood or the origin. The results
along these lines are presented in Appendices C and E. However, the
stability results derived so far relate only to initial conditions and not
to continuously acting disturbances. In order to determine the actual
behavior of a working system it is necessary to obtain analytical results
which will allow one to say exactly in what region the system is operat-
ing. This requires using the concept of ""practical stability' as defined
by Lasalle and Lefschetz to get an accurate assessment of the behavior
of the system for '"worst' input disturbances. In the case of linear
systems bounds are easily obtained and, in fact, were presented in
Hughes Aircraft Company's original technical proposal. However, in
the case of nonlinear controlled systems or linearly controlled systems
for which the control law was derived for a lower order model, these
bounds are not easiiy obtained and further work is necessary to get an
accurate assessment of behavior of the system. This would correspond

to completing the study of the performance index

min x|
bew

where one takes the maximum overall allowable disturbances.




, Thus we conclude that this study has yielded some very useful
contfbl laws for linear models of the vehicle when one considers initial
condition disturbances, but also there should be further study to assess
their usefulness when applied to linear plants acted upon by ""worst'

/

disturbances. |
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APPENDIX A
LINEAR CANONICAL FORMS FOR CONTROLLABLE SYSTEMS
INTRODUCTION

In this paper four different coordinate systems are studied,
namely

1) state variables (x)

2) phase coordinates (6)

3) Lur'e coordinates (£)

4) generalized Lur'e coordinates (¢)

There are six nonsingular linear transformations, namely

b =T86
x = Dé = DTe
§ = V¥x = V*DdD = V*DTo

that relate the four coordinate systems. In order to pass freely among
these coordinate systems, including the inverse transformations, a
total of twelve matrices must be utilized.

In particular numerical applications wherein the dimension n of
the state space is large, it is desirable to avoid either inversion of
n X n matrices, or complete spectral analyses of (nonsymmetric)
matrices. The present analysis achieves this by explicit presentation
in ""closed form" of rational expressions for the elements of all twelve
matrices,

It has been shown by Lur'e [1], Letov [2], and many others,
that use of Lur'e coordinates facilitates explicit construction of
Liapunov functions [3], hence facilitates study of stability of equilibri -

um in dynamical systems.

More recently it has been shown by Bass, Lewis, and Mendelson
(4], [5], by Wonham and Johnson [6], [7], (8], by Kalman [9], and by
Bass and Gura [10] that use of phase coordinates facilitates the appli-
cation of frequency-domain concepts to various problems of system

stabilization and optimization stated in time-domain concepts.



In this paper a system of generalized Lur'e coordinates is

defined. Unlike the Lur'e coordinates, these variables are well-
defined regardless of whether or not the system's "open-loop poles
(eigenvalues, characteristic roots) are distinct. Although many
realistic engineering problems do not have multiple roots, many highly
illuminating examples of modern control theory can be derived readily
when multiple roots are permitted. Therefore the complete generality
of applicability of this last-mentioned coordinate system is important
for both exposition and research on advanced control problems.

'I'he system to be studied is of the type
x = Ax t ayg
where
x = Ax

governs the evolution in time of the uncontrolled system, where ''a"

is the actuator vector, and where the scalar y_ = qu(x) denotes the

feedback control law. (In this paper the functional nature of ¢O is

irrelevant, hence unspecified.)
The characteristic polynomial of the uncontrolled system is

defined by

n
A(s) = det (sl - A) = 2 a5,
i=0
which defines the coefficients « , ¢_, ..., & , @ =1, Similarly,
o} 1 n-1 n -
matrices Sl’ SZ’ cee, Sn are defined either by
n
s.:Za.AJ'l, (i=1,2,--+,1),
1 J
j=i




or by means of the resolvent equation

n

(sI - A)" L= E

i=1

i-1
s

A(s)

S, .
i

In numerical practice, use of the preceding definitions for the
a, and Si is quite impossible for large values of n, since it would
require n! multiplications. However, an efficient recursive algorithm
stated below permits their computation in about n4 multiplications.
The given system is called controllable [9] if the system of n

simultaneous linear equations

a-b=20, Aa-b=0, e A

has a unique vector b # 0 for its solution. The vector b can be com -

puted by Gaussian elimination. In general, computing b represents

(l/n)t—h of the arithmetic labor required to invert an n X n matrix.
The vector b is important for several reasons. In particular,

it is the normal vector at x = 0 to the time -optimal switching surface

of the given control problem. In fact, it can be proved [11], [12] that

the time-optimal regulator law has the form
4, = sgalb-x +p_(x)]

where {po(x)/ "x "} - 0 as "x " - 0; in fact for some el > 0 there are

positive constants Boe Mg such that

l+'r]0 -
oyl =u Il T a0 (s sey .

Furthermore, if the phase variable ©, is defined by



then it will be shown below that the given system is equivalent to the

scalar system of nt? order defined by

a(e)o, - ¥, -

Passage from the phase variables 61, 61, TEICN dJ—lel/dtJ_l, e,
n-1 n-1

d el/dt to the state variables X1 Koyt X is facilitated by the
result
n i-1
O [d 61] .
x= ) f———|85;3
i 11 dtl‘l[ '
1=

to be proved below.
Next, assume distinct roots, i.e. assume that the complex

numbers )\1, )\2, e, )\n satisfy

A(Ki):O, A'()\i)¢0, (i=1,2,-++,n) .

Define vectors v!as suitably normalized eigenvectors of A¥, namely,
Aty = NV viea=1, (i=1,2,-+-,n) .

Then the Lur'e coordinates of x are given by

gizv'x: (izl’z:...:n);

it is easy to see that these variables satisfy the system

Eo— 0\ i =
gl 1§1+ LlJO ’ (1 1» 2, ,n) .




-
-

Furthermore, it will be proved that return from the variables g to

the X, is provided by the transformation

n
= z £.u"
i=1

where the vectors u' are defined as suitably normalized eigenvectors of
A, namely

Aul—)\.ul, ul+u2+"‘+un—(]_’1’...’1)>'.<.

The preceding definitions of the u1 and v" are adequate in principle but

in practlce are inconvenient. However, the correctly normalized ut

and v’ can be computed efficiently by the following closed form
expressions:

1

Lo (e

u=z 'a-> (1:1:2"",11):

(M J

j=1
n

v o= z (xi)3'1535<b , (i=1,2,""-,n) .
i=1

A complete summary of results, in systematic tabular form,
are given at the end of this appendix. All of these formulas are used

in the authors' theory of integrals and isochrones [11] which allows

explicit (local) solution in closed ("algebroid') form of both the time-

optimal regulator problem [12] and the bang-bang control problem

with quadratic performance index [13].




NATIONAL CONVENTIONS

a. Matrices are upper case letters.

b. Vectors are lower case unsubscripted or superscripted
letters.

C. Scalars are subscripted lower case letters.

d. Exceptions to these rules are i,j,k, L, v,n which are used

as summation indices or scalars; s which is a complex

scalar; A{s) which is a polynomial in s: and t which denates

time.
e. Asterisks used as superscripts (¥) denote matrix
transposition.
.th . . . i
f. The i column of the identity matrix is represented by e .
g. The symbol 8 denotes equality by definition.

ALGEBRAIC PRELIMINARIES

In general, the solution of the system of differential equations

x = Ax + ambo (1)

involves the transition matrix e t, whose Laplace transform is the
. -1 . . . . .

resolvent matrix (sI - A)"~ where I is the identity matrix and s is a

scalar. It can be shown [4, 14] that this matrix is given by

-1 I(s)
(SI - A) - A(S) (2')
where
n n
Als) = det(sl - A) = zajsJ . s =y sTls (3)
j:O 1:]_




-

and the Sl’ SZ’ SR Sn and the @@, ,a are effectively computable

by the recursion relations

Q/n =1 s Sn =1 (48.)

1 .
Cnoj T TEAS ) G=2 ) (4b)
Sn-j = an_jl + ASn—J+1 s (J = ]-y 2, : 3 1'1) s (4C)

The matrices Si can be shown [4] to satisfy

S .= Z a AT (j=1,2,-+-,n) . (4d)

The theoretical definitions (3) and (4d) cannot be used to compute the a;
and Si for large n, as they involve n! multiplications. However, the
algorithm (4b-c) requires only about n4 multiplications and has an
intrinsic self-checking feature in that (by Cayley-Hamilton) S0 = 0.

The controllability criterion of Kalman [9] is fundamental to the
present analysis and will be assumed henceforth. For the system (1) it

can be expressed in determinantal form as
det D40 (5a)
where
D= (a,Aa, -,A" "a), (5b)
Theorem 1

If the matrix L is defined implicitly by

-l A e %
L = (Sla, Sza, , Sna) (6)



then
L= [b, A%, (A%) %D, - -, (A*)n_lb] (7)

where the vector b is given by the solution (e. g., by Gaussian elimination)

of the nonsingular system of linear equations
D¥b = e (8)

Proof. If the above hypothesis is to be identically true, it must be

shown that

[(S]_a"sza’.."sna)*]_l e1: (A:jc)l-lb ’ (1: ]_,2,"',1'1) (()a)
or, equivalently, that
et = (5,a,5,8, .S AN b, (i=1,2,00 0 (9b)

is valid. In particular, the rows of (9b) can be written as
n
arst(an ity = a% z a (afvIitily s 0 (4,j=1,2,---,0) (10)

Now replace summation over v by summation over k where k= v+1i-j,

and obtain

nti-j

o k-1
E _ 11
a ak+j-i(A ) b 6ij (11)
k=1

as the relationship to be established.

"

Consider first the case for which j 2 i. This implies that 1 = k =< n.

Note that (8) can be written explicitly as

(12)

P
H

—
[
2




.

where 6kn is the Kronecker delta. With this, the left side of (11)

i ‘
becomes Erli:Jl ! ak+j-16kn . The summand is zero except when k = n
(which requires i = j) in which case the sum takes the value a = 1.

Hence (11) is true for j = i.

Returning to (11) when j < i, write the left side of that equation as

n n-j+i

sk sk k-1 % 3k k-1

a Zakﬂ._i(A V"l 1+ a z IS R (13)
k=1 k=n+1

Now, by the same argument used above, the first summation in (13)

yields the value o On replacing kby m=k+ j-i, the second sum

n+j-i’
becomes
n n+j-i
axat-i-l z o (A%)Pp = _akat )l z a (A®H™p | (14)
m m
m=n+1+j-i m=0

where the latter result was obtained by use of the Cayley-Hamilton

Theorem. (A matrix satisfies its own characteristic equation.) Now since

j<1i, (12) can be used (with m instead of k) and the second sum equals

n+j-i ntj-i

% E m+i'j_1 —
-z a_a*(A%) b = z o Btisi (15)
m=0 m=0

This has the value zero except when m+1i-j=n in which case it becomes

an+j-i' Combining this result with that following (13), it is seen that

for j < i the left side of (11) is zero. Thus relationship (11) has been

proven and theorem must be valid.



Theorem 2

A more concise expression for the inverse of L is

(LY = DT (16)
where
@ @, a4 1
az 013 0
T = T>'.< _é_ . . P . . (17)
a1 1 0 0
1 0 0 0

Proof. By inspection, the it—h column of T can be written as

n
th = Zarj el 71T} (18)
j=i
Now by definition
DT = (Dt!, Dt - - -, DtV (19)
where
n n
j:i _]21

But by (4), the definition of Si’ Dt' = S;a. Then applying (6) yields

-1

DT = (L™ )* = (5,2,5,a,- -, S_a) (21)

n

as desired.

A-10
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Theorem 3

A pair of explicit expressions for the inverse of D is

D8 (a,Aa, .-, A% g7t = oo

(22a)
-1 _ % ES e . M)k
D "~ = (Slb,Szb, ,Snb) (22Db)
Proof. Consider the matrix
ste 1 2 n
LT* = LT = (Lt", Lt", -+, Lt") (23)
By (18) and the definition of L,
n
Lt' = > [b, A%b, - -- (84" bla, I 71
j=1
n
- Z"ﬂA*)J”b , (i=1,2,+,n) (24)
j=1
Applying (4d) it is seen that Lt' = S¥b. Thus,
LT* :(Sfb,SEb,'--,S;b) (25)
-1 -1 B3 -15-1 Sk 3R -1 s
Now by Theorem 2, D* " = [(L™)*T "]7" = TL*, or LT* = (D™ ")* so that
by (25)
-1 B3 sl . b %
D~ = (S1 b,SZb, ,Snb) (26)

as required.
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Theorem 4

An explicit expression for the inverse of T is

[0 0 0 1]
0 0 1 Bl
oL . . . (27)
0 L Bn-3 Bn-Z
RS Pz Pany

B =1, (28a)

v-1
B, = @inoyBy e (v= 12,000 mn) (28b)
=0

Proof. The proof of this theorem consists of two parts. The first
part introduces the appropriate set of quantities (ﬁi) which obey (28). The
second part shows that T-1 is given by the matrix displayed in (27).

Part A. Define the quantities ﬁj(j: 1,2,---) by the Laurent series
NS
R
Ok z erallt (|s] > max |Si|) (29)
j=0 °

where the s; are the roots of A(s). Then

_ R - (n+j)
1 - <zal><2 Bys J> (30)
i j=0




-

Replace j by use of the definition v = j+n-1i, obtaining

n )
= z Z 1+v n 5" (31)
i=0 v=n-

Now interchange the order of summation by observing that0 s n-i<v=w

and 0 £ i =n imply that 0 < v< o and max(n-v,0) <i<n. Thus

© n

b= z z aiﬁi+v-n s (32)

v=0lizmax(n-v, 0)

Note that the very first term on the right side of (32) is the only constant
in the series. Thus for (32) to be valid for all |s| = max lsi’ that term

must be equal to unity and the remaining terms must all be zero. Then

anﬁo =1 (33a)
n
z aiﬁiJrv—n: 0, (v=1,2,-++,n) (33b)
i=n-v
n
zaiﬁiwhv—n: 0, (v=n+l,n+2,n+3,---) , (33¢)
i=0
or equivalently, B =1,
n-1
z aiﬁi+v-n: z J+an’ (v=1,2,70-,0) . (342)
i=n-vy j=90

where j=i+v-n, and, similarly,

k+n-1
- - = 34b
Brsn™ - D o By e (k= L2, (34b)
=k

where k = yv-n
A-13



Part B. It will be shown that TT_1 = I, where T_1 is defined by
. . .th - .
(27). By inspection,the j= column of T ! is given by

j-1

j ntk-j+l

= e (35)
k=0

Then, using (18), the i—ij element of TT_1 = T*T_1 = (T*-rl s T*Tn)

is

-1

%Py ®g i+, ntk-j+1 (36)

n j
tl‘TJ = z
£=

i k=0

The non-zero terms of this expression occur only whenf-i+l=n+k-j+1
or when £ = n+k-j+i. However, i<{<nand0 < k =£j-1 must also be
satisfied. This implies thati < n+k-j+i<nor that0 < k =j-i. Then

(36) becomes

j-i

i J_
s zan+k-j+iﬁk (37
k=0

For j=1 this reduces to unity. For j# iletv = j-1iand, using (34a),

obtain

v

i) _ _ _
t-rm = z an+k—vﬁk - Bv ¥ Bv =0 (38)
k=0

and the theorem is proven.

PHASE VARIABLES (0)

Taking the scalar product of (A*)k—lb, (k=1,2,"°,n), with the

system (1) results in

k-1

k-l 'dX _ (A*)k_lb'AX 4 (A:k) - b_ano' (39)

(A¥)™ b —=| =

A-14




~Applying (12) gives

% k-1 dx _ =Lk

(A") b dt—(A)b x + 6knLlJ (40)
Now define a new variable

61 =b-'x (41)

where b satisfies (8). Then for k=1, (40) becomes

de
dx _ |

b.d_t_—dt_AbX (42)

Differentiating this expression with respect to time and using (40) for

k= 2 gives
dzel dx 2
R N N T T (43)
2 dt
dt
Continuing in this manner obtain
il lel wy1-1
— = (4" (i=1,2,-+,n) (44a)
dat”
and
e, ., _
= (AF)bex + U, (44b)
dt
Then
n djel -
. — = S e o« . . 4
z aJ 3 [aol + alA + +an(A ) Ib x+¢o (45)

A-15



Now by the Cayley-Hamilton Theorem A(A*) = 0, whence

n
S
J
j=0

Upon defining the state variables 6 12 62, Ty, en by

dje1
== Ad/dt)e, = ¥
dt?

(¢}

(46)

(47)

the nt—h order scalar differential equation (46) can be expressed as the

first order matrix system

0=Co+e y (48a)
where
0, [ o 1 0 0 o |
0 0 1 0 0
°,
0 - , C = . (48b)
0 0 0 0 0 1
n
% ~Y "9 a2 T%-1

To find the transformation matrix between the x and the 6 coordi-

nates, note that Equation (44a) can be expressed as

0 = (A Y box (i=1,2,--+,n) ,

1

A-16
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0 =[b, A%b, - -+, (A") p] x= 1 x (49b)

Note that applying this directly to (1) and comparing the result with (48)
shows that

C - La(L)] (50)

By Theorems 1 and 2 the inverse of (49b) can be established directly.

Thus

n
x = (L) 1o = (Sqa,S,a, =+, S a)o = Z 0.5.a (51a)
i=1

or

x= DT®0

"GENERALIZED'" LUR'E VARIABLES (¢)

(The reason for this name will become clear in a later section.)

Relations Between x and ¢

Let
A -1
Then (1) becomes

o= (D" 'aD)s + D™ lay (53)
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Consider now the matrix product

~ -

0 0 0 . e 0 -ag
1 0 0 0 -y
0 1 0 0 -a,
DC = (a, Aa, ,An'la)
-0 0 0 1 —a 1)
n-1
2 i
= (Aa, A a,"',—ZoziAa). (54)
i=0

Applying the Cayley-Hamilton Theorem, the last column of (54) becomes

n
A a whence

DC* = AD (55a)
or
plap= c* (55b)
Note also that, by Theorem 3,
p la = (8%b,5%b, -+, 57D)"a (56a)
1 2 n
or, using Equation (10),
(a-sb] [ 1]
a -SZb 0
St B B B (56
La Snb_ I O-

A-18




Thus (53) can be expressed as
. Sk 1
¢:C¢+e¢o. (57)

The forward and reverse transformation relations can be expressed

explicitly as follows. By (52) and Theorem 3,

b= D 'x= TL x = ("6, 55b, - -, SEh) (58a)
or
¢, = (S;b) x (i=1,2,-+,n) . . (58Db)
Also
n
x = Dé = (a, Aa, -",An_la)d) = z cbiAi— la (59)
i= 1

Relations Between 6 and ¢

Previously [(58a) and (51b)] it has been established that

6=D'x, x=DTe . (60)
Consequently,
¢ = T8 (61)
In particular, using (18)
n n n
> .
b= (t1, 7 ,the = z tlel: z Z(zj e’ ”lei , (62)
i=1 iz 1 j=1
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and so

n n

- breY =
¢v = ¢re’ = 2 ZQjei{SV’j_Hl ) (v

i=1 j=i

1,2, ,n) . (63)

i

Non-zero terms occur in (63) only when v=j-i+1 or when j=v+i- 1.
Combining this with the constraints 1 <i<nandi<js<mn, jcan be

replaced by v+i-lonlyif l1sisn-v + L Then

n-v+1
¢y = z % 4i-1% (64)
i=1
whence, setting{ = v+ 1i- 1
n
L 2 P vs1 v=12-++",n), (65a)
L=v
%7 % (65b)

The inverse transformation can be established in a similar

manner, Employing (35),

D
<
Al
=
!
—
F=S
[¢]
<
H
-4
-
©
—
o
<
il
»
W‘&
-
=}
+
P
1
-
—+
—
<

i=1 i=1 k=0
n i-1

- Z Z Br®i® nik-i+1 (66)
izl k=0

This expression can be simplified to

n
6“ - z FSv—n+i- l¢i (67)

i=n-v+1

A-20
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by considerations similar to those used after (63). Finally, if summation

over i is replaced by summation over =v -n+1i- 1, there results

v-1

eV - z Bﬁ¢£+n—v+l R (v=1,2,+-,n) , (68a)
£=0

61 = ¢n (68b)

LUR'E COORDINATES (£)

Relations Between £ and ¢

By inspection of Equations (54) and (57), the system (1) is precisely

equivalent to

(bl = _ao¢n + qu ? (69a)
b= ¢ - @b, (69D)
¢J = d>j_1 - Otj_1¢n, <J = 2,3, ++,n), (69c¢)

Now consider the ¢ coordinates for a system with distinct complex
eigenvalues A, (i=1,2,+++,n). Multiply the jQl equation in (69) by )\g—l

and sum to obtain

n n-1 n-1

Z)\J-ld):z)\jd)—ZQ/)\jcb + Y (i=1,2,"++,n) (70)
i j ij jin o 2 E ’ )

j=1 j=1 j=0

Now since
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and (70) reduces to

Zle Zxobw (i=1,2"",n)

j=1

Define

n
j-1
£ Z)\i ¢J
=1

as the iQl component of an n-vector £. Then (71) becomes

DR (i=1,2""",n)
or, in vector form,

g =ng + 0y

where

1 2 o

- o s n —_ . o 0 _XA
A—()\le :)\e: :)\ne): u —(1’1y :1)

2

The transformation (72) between § and ¢ can be expressed in

matrix form by the equation

g:z*d}
] n
where Z = (z ,z7,-"+,2z ) and where
F 1]
S
2
N,
t n
o = =D )R =,z
k=1
n-1
L)\l -

(71)

(72)

(73a)

(73b)

(73c)

(74)




To find (Z*)-1 consider the following. The identity
Cz' = \.z2', (i=1,2+-+,n) (76)

can be verified by inspection of (48b). Now by (55b), Theorem 3, and
(50),

T loxr = 7D lADT = LA Lt - ¢ (77)
Hence
T loxT,! - Az (78)
or
C*Tz' = )\iTzl ) (79)
If the X;, (i=1,2,:-+,n), are distinct, then A = [d(A(s))/ds])\, #0
1
and so
i i
s Tz _ Tz
c N "M ANy - (80)
Now define the vectors
w' = Tzl/A'()\i) , i=1,2,",n). (8 1a)
Then from (80),
CH*w' = )\iwl , (i=1,2,--+,n). (8 1b)
Using (76) and (81) it is clear that
WJ-Czlz)\in-zl, (,j=1,2,-++,n) , (8 2a)
and
z - Crwd = a2t ewd (i,j=1,2,-++,n) . (8 2b)
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Hence

Nzt w)) = () (83)
which implies that
zbewl =0, iF. (84)
For i = j, note that
. . . T 1
i ewt = gt —2— (85)
A (N,)
i
By (75) and (18)
n n n
. : s ) P 4-
Aorat = SR S ok Y eate L )
k=1 k:l f:k
Hence
- -1
z *wW ZZ—T zaﬂ)\i ='z z——,—)\— (87)
A A :
k=1 ( i) =k k=1 L=k ( 1)

To reverse the order of summation in the last expression note that
l<ks{ < nimplies 1 =4 <nand 1= k<. Thus (87) becomes,

for (i=1,2,-++,n) ,

n £
EZ ()\)22—-;?\'—)—:1. (88)

Combining (84) and (88), there results wh ez = 6ij or equivalently

(Wl,WZ,..o’Wn)>:<(z1, ZZ,...,zn): I . (89)
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If W 2 (wl,wz, s ,wn), then (89) becomes

W = (z%)71 (90)

Hence (74) implies

¢=Wg , (91)

n n ) n
= 2 A0 Qe e (92)

or

n n
i
¥ = z z AL Z"‘fz 8185, £ k1 (93)
i=1 k=1 i ﬂzk

The summations are trivial except when £ = j+ k - 1. Combining this

with the constraints k< £ < n, 1 <k <n, (93) reduces to

n n-jt+l ()\.)k_l

- -1
572 2 AT et 4]

izl k=1 1

or, setting v = j+k-1,

n n
_ 1 s _ .
¥ = 2 z AT(\ ) %, 18 (G=1,2""",n). (95)
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Relations Between € and ©

By (91) and (61) it is obvious that

6=T ‘wg (96)
In particular, from (92)
0 i 2 S i 0 ke (97)
or
i-1
)
9. = 4t i=1,2,°*,n) . 98
; 21 o 5 (j n) (98)
1= 1

Similarly, the inverse transformation is easily established from (74)

and (61) to be

= Z*Te . (99)
Hence, proceeding as usual,
n n n
j i, k-jtl
§; = 2 ey Z Z“kejz e
j=1 j=1 k=j
(100)




Relations Between § and x

The basic relationship between £ and x can be found immediately

by applying (58b) to (72). Thus

n
£, = zK:]_IS’J.':b'x
i i

j=1

1

Now define V 4 (v, vz, e, vn), where

n
vi:Z)\g_IS?b ., (i=1,2,---,n)
j=1
Then
§i—v1x, i=1,2, , 1)
or
£ =V¥x

Alternatively, combining (58a) and (74) gives, by Theorem 3,

£ = Z¥TL*x ,
so that

V¥ = Z¥TL*
must be valid., By Theorem 2 and (90)

(V¥)"7 = (L¥)""T (2¥)"" = DW
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(102)

(103a)

(103b)

(104)

(105)

(106)



For convenience define

where, as in (92),

- io1
B N T L
- z— EakA Ja = Z P G (107)
A AT (N
j=1 ()\i) k=j j=1 ( i)
Then
n
x = DWE = UE = zulgi . (108)
i=1
Extensions and Generalizations
The identity
n n
AMm) -a(p) = (n-p Z z (109)

can easily be verified by equating coefficients of like powers of n and p
where these quantities obey the commutative and distributive laws of
algebra. With no loss of generality, n can be identified with sI and p.
with the matrix A. Then

n )9}
A(s)I- A(A) = (sI-A) z si-1 z ajAj‘l (110)

and, by the Cayley-Hamilton Theorem and the definition of I'(s),

A(s)I = (sI-A)I'(s) (111)
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Indeed, (2) can be found directly from this relationship whenever

(sI-A)-1 exists. By multiplying (111) on the right by the vector a it is
also clear that

A(s)a = sI'(s)a-AT (s)a (112)
Before proceeding, define the vector u(s) by

A I (s)a

u(s) = —/—— (113)
A(s)
where
A(s) for A(s) # 0
A(s) =
A’()\i) for A(s) =A()\i) =0 and )\i# )\j , (i,3=1,2,---,n) .
Explicitly,

>>

n n J—l n J—l
u(s) = Z Z 8 akAk_Ja = z z i akAk-Ja . (114)
j=1 k=j Als) k=1 j=1 A(s)

Now let £ = k - j+ 1 and replace j to obtain

k-4
- s pt-l
u(s) kzz:l 1; a, A(s) a (115)

Taking the scalar product of u(s) with the vector b and applying (12) it is
clear that

= (116)
S



Returning to (112), note that u(s) satisfies
A(s)a + AU(s) = stU(s) , Als) # 0 (L17a)
where

[(s) & A(s)u(s) = T (s)a (117b)

and so, dividing by &/ ()\i) and setting s )\i’ there results

Avix Y = % oaih ) AN =0 A.F AL i= cen,
Sl S AR T u\,\i’ J /\i¢ )\J(l,J 1,2, n)
(117¢)
aX )b = — (1174)
i ‘A'()\i)

In the latter case, the u()\i) reduce exactly to the u' defined in (107).
Thus the columns of U are merely the eigenvectors of A, normalized
according to (117d). Consider (109) again with n as sl and A* as p.

As before, it can be shown that

As)I = sT"* (s) - A* T (s) (118a)
or
A(s)b + A¥ T * (s)b = sI"* (s) (118h)
Define
v(s) & I'* (s)b (119a)
or, equivalently,
n
Ws) = D ilstn (119b)
=1 .
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Proceeding in a manner analogous to that followed in Equations (114) -

(116), it is clear that
v(s).a=1 (120)
Also, by (118b)
A(s)b + A*v(s) = sv(s) (121)

is always satisfied. When A(s) = A()\i) =0, i=1,2,---,n), (121)

becomes

Akv()\l)z)\iv()\l) ’ (i:l,Z,---,n) s (1223)

v()\i)-azl (i=1,2,---,n) . (122Db)

By comparing (119b) and (122) with (102), it is obvious that v()\i) is
identical to vl, (i=1,2,---,n), and that these vectors are the eigen-
vectors of A¥ normalized according to (122b).

Note that (103a) can now be generalized, using (119b) and (58b), to

n

()= vls) o x= ) sl

iz1 !

(123)

Then, taking the scalar product of v(s) with the system (1) and applying
(120) and (121) it is found that

v(s) - x

v(s) - (Ax) + v(s) - ano

x*A*v(s) + o (124)

x*(sv(s) - A(s)b) + L|JO
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Now using (123) and (49a), the above becomes

go(s) = sgo(s) - A(s)el + LJJO R 61 =b-x=d (125)
This can be considered a generalization of the Lur'e canonical form.

In fact, when the eigenvalues of A are distinct,
= i= . 1
g.=6(N),  (i=1,2,---,n) , (126)

and, setting s = N\, in (125), the Lur'e form (73a) is recovered., On the
other hand, Wheth;:r or not the )\i are distinct, the identity (125), which
in form is highly reminiscent of the Lur'e form, can be regarded as
the collection of n differential equations obtained by equating like powers
of s on the right and left hand sides. ‘However, on inserting (123) into
(125) and comparing coefficients, the canonical form (69) (or, equiva-
lently (57)) is recovered immediately. It is for this reason that the
form (57), which is valid whether or not the )\i are distinct, was called
the '"Generalized Lur'e Canonical Form. "

In a subsequent paper [ll] , an explicit, analytic, non-singular,

nonlinear transformation

o= g(¢) = g(TL*x) , (127)

will be defined which transforms the Generalized Lur'e Form (57), for

constant l.lJO, into the simplest possible canonical form, namely

g = LIJO e . (128)
The use of (57) in the form (125), which is valid whether or not the )\i

are distinct, is the key to a very direct proof of the important result
(128).
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" SUMMARY

A. Major Definitions and Identities

For the system x = Ax + ay , in general:
y o ing

(s1 - a)~L = L)
A(s)
A(s):det(sI-A):anra Sn-1+ +a =0,
n-1 o)
n
I(s) = z sl_lsi ,
i=1
n
S.:Za,AJ‘l’ (i=0,1,-+,n) , S =0 |
i j o
j=1
D= (a, Aa, -+, A% 1a) | det D £ 0 ,
D*b = e |,
L = (b, A%b, -+ -, (a%)2 1)
L -(s.a,5,a,-+,8 a)
1 3 2 b > 3
-1 e
(L )" =DT ,
-1 _ o s sk ... e
D" = TL¥ = (S%b,S%b, - -+, S¥b)*
n
T:(tl,tz,' ,tn) , tlzzaj e']--l-l-:l s (i=1, 2,
j=i
i-1
T_1 = (‘rl,"r2 . ,'rn) : 1= BJ en+J‘1+2 ,
j=0 (i=1,2,



I LT
j=0
C = <—a el el -, e, , eJ_1
o 1
-a n n-1 Ca en)
j-1 €0 e n-1 ’

Lea(L*)t = C

D 'AD = C*

For n roots )\i of A(s) = 0 distinct:

n

Z=(zl,z2,'°',zn), Z()\)

1}

W= (whwh oWt wl = TalAN)

ayh S

k-j+1
[e4
z A'(k) 2 k © ’
k=]

w = (z%)7}
n
vV = (Vl,vz,....’vn) , = z ()\i)J'lsa?b ,
1
1 2 n 1 i & ()\i)J
U=z(u,u’, " ",u’), u:DW:z——S.a
A’()\_) J
j:l 1
v=(vl, Dftv=z,
Au' = Nt ul +b = 1/4870\) , i=1,2,-°,0),
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A v1 = )\ivl , vl-a =1, (1 =1, 2, :n) s
n n 1
= Ry = i i* — Vi
b= VU*b = ) viu')h Z{A'()\-)‘ .
1i=1 i=1 t

B. Coordinate Transformations in Vector-Matrix Form

3
x 9 ¢ (ki;é xj)
x X =X 6 = L*x ¢ = TL*x £ = V¥x
0 x = DT9 =0 ¢ =To £ =2%To
b x = Do 6=T ¢ b =0 £=2%
€ -l _ _
(xi;ng) x = DW§ 0 =T "Wt ¢ = WE £ = ¢
C. Coordinate Transformations in Vector-Scalar Form
3
x [¢] ¢ ()\iaé Xj)
_ _ %,1-1 R _ i
X X, =X, 6= (A™) "b-x ¢i-(Sib)-x gi—v-x

n n n
0 x = z 0,5;2 o, =6, ¢, = zozjej_i+l IEDY
: bt :

i=1
n i-1 n .
i-1 ) ) B} j-
¢ x= z ¢a’ " | 8= z B®inoiel % = & N
i=1 j=0 j=1
¢ n ) n ( )i-l n ( )V-i
1 i j -
() x=) g o= —L—A,()\j) & 1> l > e _Al/()\T]gj 878
i=1 j=1 j=1 | v=i
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D. Canonical Forms in Vector-Matrix Notation

x:Ax+aLpO p
N n
6 =C0O+e LJ,JO )
b = C*o + ey
o,
E=NgtuCy L, (W =eltelrare) .

E. Canonical Forms in Vector-Scalar Notation
A(d/dt)ey = ¢ 6. = ¢

Efs) = sE(s) + U - Alshe, . Efs) =

éi: xi§i+¢o, £. =

for )\.1 all distinct, (i=1,2, "




10.

11.

12.

13.

14,
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APPENDIX B
. A NONLINEAR CANONICAL FORM FOR CONTROLLABLE
BANG-BANG SYSTEMS

SUMMARY

Consider the state-vector control system X = Ax + ae, ¢ = 1,
where the pair (A, a) satisfies the condition of controllability. It is
known from general existence therorems [2], [3] that there exists near
x = 0, a nonlinear non-singular coordinate transformation ¢ = pix, e )
such that the given system is equivalent to the simplest possible system

o = ene s er1 = (0,0,---,0, l)q‘, whose state-space trajectories are

’

parallel straight lines. Here the function p(x, ¢ ), and its inverse
h(c,e), where ¢ = plh(v,e), e ], are defined explicitly by closed-form
expressions involving only rational functions and the elementary trans-
cendental functions. Various problems of stabilization and optimization
can be solved in the o-coordinates and the answers then applied to the
original system in x-coordinates, In many cases [8], [9] it is possible
to define scalar functions 3(x) and y(c) such that the desired control law
is given in the form ¢ = sgn {Y[p(x, ¥)]}, ¥ = sgn[5(x)] which is readily

mechanizable by means of the explic¢it representation for p(x, t)

INTRODUCTION

In a previous paper [1] several linear coordinate transformations
were defined such that useful canonical forms of the system differen-
tial equations can be easily obtained.

Here a nonlinear coordinate transformation is defined which
changes any controllable linear bang-bang system into the simplest
possible system, namely one whose state-space phase portrait consists
of parallel straight lines. Evolution of the system in time then corre-
sponds to uniform rectilinear motion.

The theory of integrals and isochrones [2],[3] will be reviewed
in a general setting. Then for controllable linear systems a complete
set of integrals and isochrones will be given by means of contour inte-
grals in the complex s-plane [Equation (40)]. Alternate expressions
suitable for use in computer-algorithms will be derived using Lur'e
coordinates [Equation (45)], generalized Lur'e coordinates [Equations
(66) and (67)], and phase coordinates [Equation (84)]. Because of the
usefulness of these integrals and isochrones in designing and simulating
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optimal control systems, the algebraic and analytic details of their
construction will be presented in full, It is assumed that the reader
is somewhat familiar with the results of [1].

NOTATIONAL CONVENTIONS

a. Matrices are upper case Roman letters.

b. Vectors are lower case unsubscripted or superscripted

Roman letters.

c. Scalars are Greek letters and all subhscripted lower case
letters.
d. Exceptions to these rules are as follows:

1) i, j, k, 1, v, m, nare used as summation indices or

scalars.
2) 8, ¢, £, o (unsubscripted) are vectors.
3) s is a complex scalar,

4)  A(s) is a scalar polynomial in s; I'(s) is a matrix

polynomial in s .

5) t is a scalar denoting time.

e. Asterisks used as superscripts (") denote matrix transposition.

f. The ith column of the identity matrix is represented by e .

g. The symbol & denotes equality by definition;the symbol =

denotes identity,

DEFINITIONS AND INTERPRETATION

A first integral of the nth order system

is a scalar function ¢ (x) such that

o [x(0)] = 0,(x°) (2)




is satisfied along any solution of (1). Alternatively, 0, (x) can be de-

fined by the condition
f(x) - grad cr*(x) = 0. (3)

The equivalence between (2) and (3) follows directly from the identity

dog[x(t)]

- = x(t) - grad o [x(t)] = f(x). grad o (x) x = x(t) (4)

Geometrically, (2) defines an integral surface such that any state-space

trajectory initiating on it, must remain on it for all t. Henceforth,
the term "integral'' will be used interchangeably for the function o, (x)
and the surface (r*(x) = constant, The meaning should be clear from
the context.

An isochrone is a surface defined by setting the scalar function

o-o(x) = constant where cro(x) satisfies
¢ [xt]=o x°) +t (5)
o 0

along any solution of (1). Note that, as in (2) - (3), the condition (5)

is equivalent to
f(x) - grad O'O(X) =1. (6)
For a geometric interpretation, assume that two trajectories of (1)

start on the same isochrone. Let the initial condition be xo for one,

and % © for the other. Then

o-o(xo) = 0'o(>~<0) . (7)

At some time t assume that the first trajectory crosses another iso-
chrone defined by o-o[x(t)]. Let t represent the time at which the

second trajectory crosses this isochrone., Then by definition

TClearly, it is only necessary that (3) hold identically on the single surface
o, (x) = O‘*(XO); however, if (3) holds in a neighborhood of xo, then there

exists a family of integral surfaces o (x) = constant in that neighborhood.
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o [x(0)]) = O], (8)

The characteristic property of an isochrone is such that (8) must imply
t="%. (9)

Thus the time for points on various trajectories to move between fixed
isochrones is constant;hence the term '"'isochrone.' In subsequent work
this term will refer to either the function cro(x) or the surface

o (x) = constant,
0O

A regular point ¥ is one such that £f(X) # 0. A singular point R,

0, provides an equilibrium solution x(t) = R

which is such that f(®)
of (1).

1

GENERAL THEORY OF INTEGRALS AND ISOCHRONES

Theorem 1, If o fox are integrals for (1), then so is

1”920 777 %

O'*(X) = {D(Gl, Toy "L O Y, (10)

where { is an arbitrary function of its n-1 arguments.

Proof. By composite differentiation, (10) yields

f(x) - grad o, (x) = z é—g f(x) . grad crj]: 0. (11)

Theorem 2. Every integral o,(x) can be expressed in the form (10)
in a neighborhood of a regular point R if Ty Ty o1 are function-
ally independent at that point [i. e., the vectors grad o., (i=1, 2y oo,

n-1), evaluated at ¥, are linearly independent].

Proof. If the n-vectors grad o.,(i = 1, 2, --+, n-1), are linearly

independent at ¥, then the matrix




80‘1 80‘2
8X1 8x1
80'1 802
8X2 sz
801 80‘2
0x -1 axn—l

must be non-singular,
trarily, X

da

1 oa
for which the vector

1z

ox_ ' 9x_ "’
n n

on the rows of (12)].

Appendix 1] the transformation

T3 T Py o e X X))
has a unique inverse

Xy = hk(crl, Tos " O g5 Xn)’
in a neighborhood of %.

Or, in that neighborhood,
o3 = Pilhy (0, op ey o e X))

T x

Jdo
0x

o]
o

B
—

(R)

[Note that since the x's can be arranged arbi-

can be chosen with no loss of generality as that variable

acrn_l

) is linearly dependent

Then by the Implicit Function Theorem [see

i=1, 2, -, n-1) (13)
(k=1, 2, ---, n-1) (14)
:hn_l(o—l: 05, :O-n_l,Xr),Xn]. (15)



Since (15) is an identity, o, must be independent of X hence

n-1
8xn - - 8xk an 8xn ’ ’ ’ :
k=1
Now consider an arbitrary integral
0'* = t_,(Xl, XZ, ooy Xn—l’ Xn). (17)
Applying (14),
O'*:p*[hl(o-lyo-zy T, Crn_l’ Xn);°"’ hn_l(o-l, UZ»""Un_l’xn)’Xn]’ (18)
and so
d n-1 9h
U:}: _ z 8@ k + 8Z_, (19)
dx 0x, Ox 0x ’
n k=1 k n n

Before proceeding, note that the definition of an integral requires that
f(x). grad ¢, = 0, f{(x). grad o, =0, (i=1l, 2,---, n-1), (20a)

or, in vector-matrix form,

[grad oy grad o,,.--, grad o1 grad (r*]*f(x) =0. (20b)
Since f(x) # 0, this can only be valid if, at %,
n-1
grad o, = Z Y; grad T, (21)
i=1

where the Y4 are constants not all zero. In scalar notation, (21) is




9 p.
9t _ i _ 2
8X - YiaX 3 (k—l: 2'9 tt n), ( 2)
k : k
i=1
With this, (19) becomes
do, n-lon-l 55 an S iy
eSS (San) e
dx_ ~ Y3 8%, Ox Yi 3x )
k=1 i=1 o i=1 n
or, rearranging the summations,
do, 2ot 2l 55 an 3 p.
= z Lk}, (24)
dx_ © Yy 9%, Bx ox_ |-
k=1 i=1 n n
By (16), then,
do—>‘<
= =0, (25)
n
which indicates that o, 1s not a function of X - Thus the construction
(18) has defined a function & such that
U>}<:€(0—1’ 0—2’ T, O-n__l)’ (26)

and the proof of the theorem is complete.

Theorem 3. Let o, be an integral, and o, an isochrone. Then the
function
) . O—O = 0‘* + 0'n (27)
1s an isochrone.

Ta theorem similar to Theorem 2 is given in [4, p. 115]. However, that
theorem refers to n independent time-varying integrals; in [4], if T
is an isochrone, ((rn - t) is called an integral. Theorem 2 is not a

direct corollary of [4, p.115).
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Proof. Since

f(x) - grad o= f(x). grad o, + f(x). grad o, 0+1=1, (28)
(27) must be an isochrone,

Theorem 4., Let o be an isochrone, and let (Tl, Oos tth T be
first integrals, functionally independent at a regular point X. Then

every isochrone o can be expressed in the form

) + o (29)

o 2 n-1 n

in a neighborhood of a point X for an appropriate function g,

Proof. By hypothesis,

f(X) . grad 0'0 =1, f(X) . grad O'HE 1 (30)

whence

f(x) - grad (o - o )= 0, (31)

and T, -0, 2 o, must be an integral. In a neighborhood of R Theorem
2 applies, and o, must have the form (10). Thus every isochrone must

have the form (29) in that neighborhood.
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RELATIONSHIP TO CONTROL THEORY

The value of the concepts introduced in the preceding pages to the

theory of automatic controls is embodied in the following theorem:

Theorem 5, If (rl(x; €), o-Z(x; €y, crn_l(x; €) are first integrals

and eo‘n(X; €) is an isochrone for the system

%= Ax tae, (Z=1), (32)
and if the elements of the vector ¢ = [(rl(x;e), o—z(x;e),- ., eon(x;e)]
are functionally independent at &, then in a neighborhood of & there
exists a unique transformation ¢ = p(x; ¢), and inverse x = h{s;¢) between
the system (32) and the system

&= ee (33)
where p and h are n-vector functions and ¢ is a parameter only taking
on the values +1 or -1. (The reason for making € a factor in the defini-

tion of the isochrone will become evident later. )

Proof. By the definitions of integrals and isochrones, &i = 0,
(i=1,-++, n-1) and ec'rn =1, or Eyn = ¢, whence (32) implies (33). How-

ever, by the Implicit Function Theorem [ see Appendix 1] , the implicit

equation ¢ - p(x, €) = 0 has a unique solution x = h(s:;€¢) near X, because
the Jacobian matrix 98(¢ - p)i/axj = —E)pi/axj is non-singular at e by
hypothesis.

Geometrically, the nonlinear change of coordinates described
above rectifies the state-space flow of (32) into the most elementary
possible dynamical system, namely uniform rectilinear motion along

parallel straight lines. Solution of the system (33) is, of course, trivial.
APPLICATION TO HAMILTON-JACOBI EQUATION

If the transformation between (32) and (33) (i. e., between x and ¢

coordinates) can be found explicitly, solution of the Hamilton-Jacobi



partial differential equation encountered in optimal control theory is
facilitated.
Consider the problem of choosing the control ¢ in (33) such that

the cost functional (or performance index)

B!
2% = [ win at (34)
0
is minimized. Here x(t) = x1 is a given stopping condition so that the
ierminal time ty = tl(xo). The optimal control ¢ = ¢(x) then is given

by the solution of the Hamilton-Jacobi Equation (6], [7]
mein 3x-A* grad ®(x) + ea: grad &(x) + \If(x){ =0 . (35)

When a- grad & = 0, this expression is minimized by the choice

¢ = -sgnfa- grad ®(x)] , (36a)
and so (35) becomes
x .« A% grad &(x) - |a- grad @(x)' + ¥(x) =0 . (36b)

Now, when Theorem 5 applies, Equation (36) may be transformed from

x-coordinates to g-coordinates by setting

8(x) = @ [h(g;e)] 2 B(ose) (37a)
¥(x) = T[h(c; ] 2 T(o; ) . (37b)

Correspondingly, the pair (A, a) becomes (0, en), and so the Hamilton-

Jacobi Equation (36) becomes

83(o;e)
Bcrn

€

B 3 93
= =¥(o;e) € = -sgn [80 ] . (38)
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For constant ¢, the general solution of (38) is

.

a
n
N\
®(o;e) = 80(0'1, PR crn_l;e)—Ef T(as €) do (39)
(6]

A

where Qo(o-l, Tyttt O €) is an arbitrary function. In fact,

88/80-115 0, whence (39)no‘klaviously satisfies (38). Thus (39) is a par-
ticular solution of (39), On the other hand, the difference between any
two particular solutions of (38) must be a solution of a&?/agn, which is
~
fully accounted for by the arbitrariness of <I>o in (39).
Thus if the transformation laws x = h(s;¢) and o = p(x;e) are
known, an important class of optimal control problems can be reduced

explicitly to the problem of properly piecing together functions of the
type (39).

EXPLICIT CLOSED-FORM TRANSFORMATION FROM x TO o

Theorem 6. The system (32) is equivalent to (33) under the trans-

formation defined by

£ (s) = vis) x (40a)
-1
a.:-l—- f -Z-{(——)i log [l+es§0(s)]ds, (j=1,2,---, n)
J Z'n"\f-lls|—p e (40b)
L 0b

where ||x|| is sufficiently small so that |S§O(S)| =1, and the path of
integration is a circle enclosing all the roots of A(s) = A()\i) = 0,

(p > maxl)\il ). (Recall that the quantities v(s) and A(s) are defined in
in [1].)
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Proof. Differentiate (40b) with respect to time and apply
[1, (125)]Tto obtain

i-1
. €
757 Zanel [ Treeg (o |Fole) Hemaleloy] ds o (412)
510
or

Sj-l Iesgo(s)+ezj ds j-1

] 1 s Glds
737 21 A(s) — Ttesg (s) BN f1 +esg (s)
ISIZP |s|:p

(41b)

Now, since ¢ = %1, the first term of the right side of (41b) becomes

— Ehk 2 ) (42)
. - 6- s H - 1 , D R n .
21 Als) ~ “Vjn b=1

|s|=p
The derivation of this result is given in Appendix 2. The remaining
term on the right hand side of (41b) can be expressed as

A f S8 o1 [ A
PN 1+esg (s) PN fs z( 1) [esgo(s)] s=0,
Is]=p |s]=p k=0

if |€P§0(9)| = |p§O(P)| < 1. (In fact, since the integrand in (43) is ana-
lytic in s, Cauchy's Theorem implies that the integral in (43) is identi-
cally zero.) Combining (42) and (43) with (41b) yields

5= 65, (G=1, 2, ~**, n) , (44a)

or, in vector notation, the desired system equation

n

F = €e (44Db)

must be valid. Note that the condition |p§o(p)| <1 can be obtained as a

constraint on || x|| by applying (40a) to obtain =]l < =
pvip
the upper bound of Hv(s) || on |s| =p.

where v is

T[l, (125)] refers to Reference [1], Equation (125).
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Corollary 6. 1. For distinct )\i, (i=1, 2, *++, n), it is clear that

integration of (40b) by the Calculus of Residues yields the closed-form

expressions

gl = Vl'X ’ Vl = V()\l) 2 (1 = 1’ 2: T, n) * (453)
n ()\i)j—l e
- — ) +eN.E. , =1, 2, -, s 45
7= A'N{M og [L+eng Il (j=1 n) ,  (45D)
i=1

where gi are simply the components of the state vector in Lur' e canoni-

cal form [1].

In cases for which the system eigenvalues are non-distinct, the

explicit evaluation of ¢ is not as simple as in (45). For convenience,

define
esj_l
n(si8s6) = ——log 1+ esg (s)] . (46)
Then (42) becomes
~ 1 Y](S’ goyE)
O'J- = 2o f AlS) ds . (47)
|s=p

Assume that A(s) = 0 has £ < n distinct roots )\i such that )\i is a root of

multiplicity ji » that is,

j j j
AG) = (s - A (s s ot (48)

where

jptigteti=n . (49)

Then by a partial fraction expansion in (47), [5]

2



¢ Ji

1 kiv
= . ds , 50
757 2l f z 2 v °° (50)
[sl=p\li=1 v=1 (s -xi)

where £ is the number of distinct roots of A(s) = 0 and

3.
1
. A 1 dV'l (s ‘)"i) T](S,go, €)

iv = (v - 1)} c.lsv—l Als)

(51)

s - X

The theory of complex integration then yields the following result.

Corollary 6,2. For non-distinect )\i , the transformation (40) has

the closed-form expression

i
g. = k. , (j=1, 2, "', n) . (52)
) Zl[ 1 ]V:ji

EXPLICIT CLOSED-FORM TRANSFORMATION FROM ¢ TO x

Theorem 7. Assume that the system (32) is controllable, The

transformation ¢ = p(x, ¢) has a unique inverse x = h{s, ¢) given by

n n-v

1 € £+1

_ . ] , (53

x i1 f S ) eXP e_z z @,y o 1%u(s) ds (53)
Isl=p v=l £=0

where u(s) is defined in [1].

Corollary 7. 1. When the X\, are distinct, the inverse of (45) is

given by

n n-v

€ £+1 1

— - 54

)\i exp ez ZQVH)\i T, lou (54)
v=1 {

=0

n
X =

1

i
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Proof of Theorem 7 and Corollary 7. 1. The simplest proof of

Theorem 7 seems to be that in which Corollary 7.1 is proved first,
independently, and then used as a lemma in the establishment of the
theorem, In other words, (54) will be proved and then generalized to
(53); subsequently, (54) can be recovered as a special case of (53).
Consider (45) and define a vector q such that each component is

given by

1 :
q; = ()\i)—)\—ilog [1 + exigi] , (i=1, 2, ., n) . (55)

Then (45) can be expressed in vector-matrix form as

c=2Zq , (56)

where Z is the Vandermonde Matrix.

As shown in [1], the inverse of Z is given by the transpose of a

matrix W = (wl, WZ, < e, Wn) such that
n j-1 n
. (\.) .
i i k-j+1 . _
W= z Al ()\1) z ake ’ (1- 1, 2’ ’ n) ’ (57)
=1 k=

where the ap are the coefficients of the characteristic polynomial A(s)

of the system. Thus (56) yields
a= W , (58a)
or

q. = W-ao , (i=1, 2, ---, n) . (58b)
Then, combining this with (5) gives

gi = —)\i]- 3eXp GKiA'()\i) w cr] -1 } . (59)



Now, applying (57),
n n n n
1 i J k J+1 - z z J
MAR) W = e z za M =€ M o _je1t @ (60
j: : _]-——1 k:J

To transform this last formula to a more convenient form, replace

k by a new index v=k - j + 1 and obtain

n n-jt+l
. i N N . \j B e
e)\iA()\i) W o 2, .4./ v+J 1Mo {01
j:l V:
Interchanging the order of summation in (61) and letting £=j - 1,
e, AYN,) wi- g = z o )\£+10" (62)
i i vl i v :

v=1 £=0

Then, applying this result and [1,(108)] to (59), it is clear that the

desired transformation formula is

n n n A
- zgiulz z_ exp z z v+£ i (Tv -1 u’ ‘ (63)
i=1

iz 1 v=1 £=0

Now define a transformation x = h{g, €¢) by (53). Using the Calculus
of Residues, it is clear that (63) is equivalent to (53) when the )\i- are
distinct., Also, for distinct )\i, (45) and (40) are equivalent, Hence it
is certain that (53) is the inverse of (40), at least when the )\.l are dis-
tinct. It will now be shown that this proposition is valid for all systems,

even when the )\i are non-distinct. To verify this, consider (40b) in the
g = p(X;E,A: a’) s (64)
and define A to be simple when the roots of its characteristic polynomial

A(s) are distinct. It is well known that if A is not simple there are

simple matrices A  such that ”A—AO“ is arbitrarily small.




It has been shown that there exists a function h(o;e, A, a), namely

(53), such that
h(p(x;e, A, a)ie, A))) & R(xje, A, a) = x (65)

is valid whenever A is simple. Now take A non-simple, Let ;Avi be a
sequence such that A, is simple for each v= 1, 2, 3, *** and such that
A, —~A asv—+wo. Now the integrand in (40b) is a continuous function of
x, A, a, and e since v(s) is a polynomial in A, a, and 1/A(s) [1, (119b)].
Recall also that 1/A(s) is an infinite series in powers of s'l, which
converges for lsl > max()\i), whose coefficients are rational functions
of A, Thus p(x;e, A, a) is a continuous function of all its arguments.
Clearly, an analogous result can be obtained for h(s;e, A, a). Thus
ﬁ(x,e,A,a) is continuous in all arguments and so /ﬁ(x;e AL, a)—-ﬁ(x;e , A, a)
as v—wo. But since /};(x;e » A ,a) = x, it follows upon taken the limit that

ﬁ(x;e sA,a) = x. This completes the proof of the theorem,



EXPANSION OF ¢ IN SERIES OF
RECURSIVELY COMPUTABLE MULTINOMIALS

Theorem 8. The functions o, defined in (40) may be expressed as
(i:]-az""an) (66)

.
where the sequence cf numbeis {f}“ is recursively computable from

the definitions

£-1
‘30: 1, Bf = aj+n-£ B_] ’ (l = 1,2,"',1’1) (678.)
j=0
£4+n-1
Bran == D, @4y =120 (67b)
j=t
and where the functions w, = v, (x) are multinomials of degree v in 2
Port s ¢ also recursively computable by
w; = 9y (68a)
v-1
€
w, =9, 3 mo ¢ (v=2,--+,n) (68b)
m=1
. n (V:LZ,...),
®yin T T Vin z (vin-1)¢w 4n i . (68¢)
i=1 (1:1,2,'--,11)

and the ¢, 's are linear functions of x defined in [1].
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Proof. By a Taylor expansion

m .
(-1 jt+l1

¢ log (1 +esg_(s) = z ¢ ——;—— [e osgo(s)]j , (69)
=1

for Ie S§0(5)| < 1. Now, since go(s) is a polynomial in s, (40a), [1, (119b)],

the right side of (69) is an infinite series in s and so

€ log [1+esgo(s)] = z szj ’ (70)
=1

where the coefficients o:j, (j=1,2,°++), are to be determined. To

accomplish this end, differentiate (70) with respect to s, obtaining

2 e}
d[sg (s)]/ds .
< dlogy(e)] :Z jwsd™l (71)
Ltesg(s) i)
However, from [1, (123)]
n
£, (s) = z sl (72)
i=1

and so (71) becomes

n n @
z isl'lqsi: 1+ez s1¢i 2 jszJ‘lz (73a)

i=1 i=1 j=1
[o 0] n [es]
j-1 z z itj-1
= s + € w 73b
z Je, Jwify (73Db)
j=1 i=1 j=1



Let k = i+j in the second sum on the right-hand side of (73b) and
replace the index j by k-i to obtain

n @ n [o0]
Li-1 0 .o j-1 . k-1
z is” "¢, = z ijs + € z Z (k-1)¢iwk_is . (74)
i=1 j=1 i=1 k=i+1
Then, interchanging the order of summation for the terms in question
min
n ® o (k-1,n)
Li-1 0 -1 -
215 ¢1—ZJ‘*’J-S toe Z z (k1¢>wk1 . (75)
i=1 J:l

Now, equating like coefficients of s in (75),

w) = ¢>1 , (76a)
min
(v-1,n)
o =9-5 > Welew, ;5 (v=Lzee) . (T6D)
i=1

For v=2,3,---,n, let m = v-i and replace i in (76b). Then

w, = @y "fv' 2 me ¢, . (v=2,"+-,n) . (77a)

For v=n+l,+++, replace v in (76b) by v+n and obtain

n
€

won T T T z (v+n-i)¢iwv+n-i s (v=1,2,-¢-) . (77b)
i=1




v -

Thus the w's can be generated recursively as functions of the ¢'s as

claimed.

Note that, using (70), (40b) can be expressed now by

1§ sthas
77 217'\/:1|§ A(s) sz

s|=

As shown in [1, (29)],

= z Bﬂ s_(n+1) ; (|s|>p)
£ =0

where the B's obey (67a, b, c). Then (78) becomes

[o0]
z z ﬁles—n-lﬂ.ﬂ-st, i=1,2,"*-,n)

By residues, this becomes [-n-£+j+i-1=0 when j = L+n+1-i]

[o0]
T D Bepmer ¢ B L2
£=0

the desired result,

Corollary 8.1. The nth order scalar differential equation

B~21
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has for a complete system of integrals and an isochrone the

multinomials
o = o f6li-1], gl .o [Pl o), (82)
i i\"1 1 1
defined recursively by
s = oln-1] (83a)
n 1
n-i
_ [i-l] € [i+m-l] . . .
o =0 H L S z mg___, 6 , (i=1,2,---,n-1) {(83b)
m=1
Proof. Since the characteristic equation for (81) is A(s) = s,
@ =0 =... = = 0. Then from (67a, b) it is clear that (31 =0,
(£ =1,2,--+), and so (66) becomes ¢. = w_ .,,. Also, by [1,(65)]
[n-i] . i n-i+1
¢, =0 .11 = 6] ,(i=1,2,-++,n). Thus (68a) yields (83a) and (68b)

yields (83b), directly.
The integrals of 9[13] =¢ and 6 [14] = ¢ given in [3] can be gener-

ated systematically by use of (83).




.

CLOSED-FORM EXPRESSIONS FOR COEFFICIENTS
OF POWER SERIES EXPANSION OF o

Theorem 9. The functions T, defined in (40) may be expressed as

oy = (AT b - Feeop tos, = 12, e, ) (84a)

where (see [1])

0 o0 0 1 B,
0 0 1 B, B,
Lo o . B B B )
Q, = (07} bof P ot (e
1 Bl n-3 n-2 Bn-l
Bl BZ n-2 " "'n-1 Fjn
n
D' = (sTh, s¥h, ..., S¥B), s, - z o, Al (84c)
RS Tt Com T ’
D = (a, Aa, ---, A" 1a), Db = 1 (84d)
QJ‘I’I = A QJ ’ (J =1, 2,"',1’1—1) . (848)

Proof. It is well known that for I)xi gil <1,

‘ 2 1 2, 5
?log(l+€)\i§i):e gi-ze)\igiq.... (85)

B-23



For simplicity, assume (temporarily) that the )\i are distinct,

(45) becomes
1

! | < )J >
i
crjZZA'(x i'Eéz MEg o

i=1 i=1

Now since §. = Vv *X,
i

where

n J
(\.) ..
A 1 i, 1,%
= z A'()\.l) \% (V) .
i=1

Since v' is an eigenvector of A" [1, (122a)],

1 13,5
i = m(v)(V) =Qj+1,

Then

(86)

(87)

(88)

(89)

(90)



" However, by [1, (105), (22a)]

D, . noooa
1 1, 1.% i i 1% sk
Ql = z A'()\) \4 (V) = V{ z ———Al()\.) e (e) }V =
i=1 ' i=] 1
. S VR .
- 7z {Z Ay © e } z" D7 (91)
i=1 !

Define the matrix E by

E2 i SN (92)
= ATN) ’
i=1

where the z' are the columns of Z. Then by [1, (75)], the (v, p)&

element of E is
v V8 . Xi 1 -1
— V— -
e’ Eel = z amg O et (93)
i=1

In Appendix 3, it is shown that

n

()
eV.EeP‘ - z _——_—_A'()\l) = BV‘l’}J,—n N

vip-1
(V:H: 1,"',11) ) (94)

i=1

when the B's are defined as in (67a, b, c). Thus the theorem is proved
for simple matrices A,

However, since (40) is analytic in a neighborhood of x=0, there
exist vectors £ = fi(A, a) and matrices R, (A, a) such that

o, = lx - Le(xR) 4+ -0+, (j=1,2,-+-,1), (95)
N 2 J



for all A, Furthermore, Ei (A, a) and Ri (A, a) are rational functions
of the elements of (A, a). But the expressions in (84) are well-defined
rational functions of (A, a) whether or not A is simple, and it has just
been proved that

ﬂ‘] - (A*)j--l b, R. = (A:lt)j"l Q (J =1,¢-- ,n) s (96)

whenever A is simple. Hence by the continuity argument used after
(65), the relaticnships {96) inust remain valid for all matrices A, simple

or not. This concludes the proof,

Note: The Jacobian matrix for the transformation defined in (40) is, by
(84a), L= [b, A'b, +++, (A" !b]. From [1, (16)] det L=detD
and L is non-singular if the system (32) is controllable. Thus
the os (i=1, 2, -++, n) defined by (40) are indeed functionally

independent at x= 0.

CONCLUSIONS

The functions o, (x, € ) may be mechanized to any desired degree
of accuracy by means of (45), or (66)-(67), or (84). This facilitates the
synthesis of optimal feedback control systems as indicated in the discus-

sion following Theorem 5,




APPENDIX {

IMPLICIT FUNCTION THEOREM

Consider the m-valued vector function f(x, y) where
X = (xl, XZ, cee xn)* and y = (YI’ Yor 0t s ym)*. Suppose that
f(x, y) has continuous first partial derivatives with respect to the

components of y in a neighborhood of a point (%, ¥). If

(i) f(%,5) = 0, (1. 1)
(ii) 8f1 afz 8fm
Byl Byl Byl
of) o, o o (1. 2)
ayz 8y2 Byz
det : : ’ : £0,
8f1 8f2 o Bfm
8yrn 8ym ayrr1 A A
— — (X’ Y)

then there exists in a neighborhood of (X, 9) a unique set of functions

g; =g;x), (i=1, 2, ---, m), such that

vy = g &)
v, = g,(x) (1.3)

Yo = &)

represents the solution of f(x,y) = 0 near &, /}>) in the sense that
£(x, g(x) = 0 (1. 4)

is valid in this neighborhood.
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APPENDIX 2
Theorem. If the roots )\i of A(s) = 0 are distinct, then

j=1

W
z A T Oin (=12, =+, n). (2. 1)
i-1

Proof. (D. C. Lewis). By the theory of residues,

§ o Y

A(S) ds = 2mw~v-1 z m R (J =1,2, 3-..) ’ (2. 2)
|s] = p i=n

where p > max |)\i| , i=1, 2, «++, n}). Now evaluating the above

integral directly as p becomes arbitrarily large yields

2T
j=1 1i
s _ Iim 2m N-1dY
§ A(5) ds = Pr - , (2. 3)
s|= .
lsl=p z @, o3 exp [(m-j) /=1 v]
0 m=0
where s = pexp (N -1y). Forj=1, 2, -+, n-1, then,
sj_1
f a05) ds =0 , (2. 4)
Is|=p




and for j=n
Sj-l 2w
f m ds = J; \/-—ldY:Z'IT'\I-].
o=

Thus from (2. 2) and (2. 5) the theorem is proven.
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APPENDIX 3

Theorem. If the roots of A(s) = 0 are distinct, then

o))
oy < B (G=1,2 3 - ). (3.1)
gl A T P,

j-1 .
§ Z(S) ds = § z B, g~P-vH-l g (3.2)
|s|= p |s|=p v=0-

By the theory of residues [ -n-v+j= 0 whenv = j-n]

ds = 2wa/-1 B.
j=n .
s|=p

Combining this with(2.2) gives the desired result immediately.
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HIGH ORDER SYSTEM DESIGN VIA STATE-SPACE CONSIDERATIONS

R.W. Bass and I. Gura, Guidance and Controls Division, Aerospace Group
Hughes Aircraft Company, Culver City, California

Abstract

For nth order constant plants, it is known
(Letov, 1960) how to pick n desired closed-loop
poles guaranteeing optimality relative to quadratic
integral criteria. Also it is known {Bass, 1961)
how to synthesize closed-loop poles arbitrarily by
state-variable feedback, provided Kalman's criter -
ion of controllability is satisfied. In this workthese
principles are combined into a unified design pro-
cedure incorporating the algorithm of Leverrier
(1840).  If only m <n outputs can be measured, an
ideal system can be synthesized "asymptotically"
by a feedback filter which processes the outputs,
provided Kalman's criterion of observability is
satisfied. If the filter is physically realizable by
a passive network, the absolute smallest number of
new poles which must be introduced for mere sta-
bility is in general [(n/m)-1]. But the only general
designs of the filter are those of Kalman (1961) and
Luenberger (1964) which introduce, respectively,

n and n -m new, poles. Here a closed-form compu-
ter oriented general synthesis algorithm is
presented which designs the filter to have only
about [(n/m) - 1)] potes.

Introduction: Matrix Transfer Functions
and the Resolvent; Leverrier's Algorithm

Consider the open-loop system (uncontrolled
system or plant) which evolves in time according
to the differential equation

x(0) = x°. (1)

Let s be a complex variable, and let £ denote the
Laplace transform operator; write x(s) for £x(t).
Applying £ to (1), obtain sx(s)-x° = Ax(s), or

x(s) = (sI - A)-1xo0, By Cramer's rule, the resol-
vent matrix (sI-A)-l is such that each of its ele-
ments is a ratio of polynomials in s (transfer
function), and is defined whenever s is not a root
of A(s)=0, where

x = Ax,

n
A2 det (sI-A) = E aisi, (fa_=1) (2)
i=0 n

is the open-loop characteristic polynomial. Now
clearly the general solution of (1) is

x(t) = exp(At)®, exp(at) = £ Y(s1-aV1}, (3)

where each element of the state-transition matrix
exp (At) is the inverse Laplace transform of the
corresponding element of the resolvent. A more
explicit form of the resolvent can be defined ( 4 )in
terms of the matrix polynomial [numerator transfer
matrix]

n
ris) & )sils,, (4)
i=1 !
where the matrices Si are defined for i=0,1,2,---,n
by n L
N j-i -
5,2 LAl (S,=1). (5
J=1

Now it is well known [4] that the resolvent [open-
loop transfer matrix] is

1 n Si-l
(s1-a)" = T(s)/a(s) = i§l| AT (6)

The theoretical definitions (2), (5) are useless for
large n since they involve n! multiplications. Alter-
natively, a recursive algorithm for computing

@ ,q, -, - and S ,SZ,---,Sn_ in about n
multiplications can be derived from Newton's iden-
tities between the ¢ and the elementary symmetric
functi]ons of the root:E [op]en-loop poles or plant
poles] of (2); this is [6,7] Leverrier's Algorithm
(1840), sometimes called by other names [8' since
it has been independently rediscovered or improved
by Horst (1935), Souriau (1948), Frame (1949), and
Faddeev and Sominskii (1949). The algorithm is,
for {j=1, 2,---,n),

a %1, s &
n

I, (7a)

i) SqT e HAS, -
(7b)

@, 5= - (/jrras

As an automatic self-check on round-off error,
note that (in theory) S, =0. The first mention of
(7) in control literature appears to be that of Zadeh
and Desoer [5] in 1963, although one of the present
authors has used (7) in actual control design since
1960 [1, 2].

Relation between Open-loop Poles and
Closed -loop Poles

Suppose that the rate of change of the state vec-
tor is modified by a forcing function {,a, where the
scalar function y, = §,(x) is the feedback control
law and the constant vector a= (ai) is the actuator

vector. Thus % = Ax+an.p0. (8)

For linear control
¥

where matrix transposition is denoted by an aster-
isk (*). (Vectors are columns unless otherwise
specified.) Thus (8)-(9) becomes the closed-loop
system

:g.x:g*x’ {9)

o

X = (A+ag¥)x = Ax (10)
and
n .
A(s) € det(sI1-K) = ), &s' (11)
i=0

defines the closed-loop characteristic polynomial.
Since computer algorithms for finding the roots
{given the &;), or conversely, for synthesizing the
@3 (given the roots), are standard, the specifica-
tion of the system poles and of A will be treated
as equivalent propositions. Although there are
various ways of choosing a desirable A, it will be
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assumed for the present that this choice is not an
issue. Of course, it is required that exp (At)decay
to zero as t increases; hence the system poles must
have negative real parts. Accordingly, A& must be

a Hurwitz polynomial. Here the relationship be-
tween A and A is analyzed assuming only that the
gain vector g is known,

By means of the numerator transfer matrix
I'(s) it will be shown that [1, 2]

A(s) = Als) - g-T(s)a,

or, equivalently

(l12a)

&'i = ai-g-Si+1a, (i=0,1,---,n-1). (12b)

The proof of {12) rests on the determinantal identity

(13)

To establish (13}, nnte that (hecause 2 detecrminant
is an alternating multilinear function of its column
vectors) det (I+cd*) = det(e1+d1c,~--, en+d,c) =
det (el,---, en)+’d1det (c, el ..., en)+ ...+ djdet (el,
e2,...,¢c) = l+djcy ++--+dpcp = 1 + d-c. Now (12a)
follows trivially from (6) and (13) since A(s) =

det (sI-A-ag*) = det(sI-A)det (I -[T(s)/A(s)]ag®) =
A(s){1-[1/a(s)]g-T(s)a} = A(s) -g-T'(s)a. (Note
that (12) is the basic lemma in Kalman's 1964
paper [3], where (13) is referred to as a "well-
known matrix identity'; recently Kalman has
acknowledged [1], [2] as his source. See Appendix.)

det(I+cd®*)=1+d-c.

Controllability and Synthesis of Arbitrarily
Specified Closed-loop Poles by
State -variable Feedback

The systemn (8) is controllable in the sense of
Kalman [11] when

detD # 0, D & (a,Aa, A%, ., AM2).  (19)
Accordingly, the system of linear algebraic
equations
i-l = i=1
(A7a)-b =6, (i=1,2,---,n), (15a)

where 6jn is the Kronecker delta, or, equivalently
# .
Db = el (b= (D-1)*em), (15b)

has a unique solution b# 0 if and only if the system
is controllable. (en is the nth column of the identity
matrix.) The vector b is important because the
system (8) is precisely equivalent [10] to the scalar
nth order system

A(d/dt)e1 = Lpo (16)
under the explicit, reciprocal transformations
91=b-x, x = {F(d/dt)el}a. (17)

One may compute b from (15a) by Gaussian elimina-
tion [7]), which in general requires only (1/n)th of

the arithmetic labor of computing D-'. Furthermore,
once b is known, D' is known explicitly, for in[10]
the present authors have established the useful
matrix identities [det D = 1/det L]

-1»

D12 (@ Aa,, 82 N2) = (ST, 5B, 0, 8%B), (182)

2

-la 3% y - -
L8 (b,8%b,- ()" o) = (5,25 ,8,.00,5 2)". (18D)

The linear relations {(12) may be collected into

the vector equation n
(SaSa-uSa)* ‘-Z(a -a )i
I R i-1’€ -

(19)

hd .

Now from (18b) and the Fredholm Alternative [15]
for singular equations, the following result [1],(2]
may be concluded. The system (8)-(9) may be
synthesized with arbitrarily specified closed-loop
poles if and only if it is controllable, in which case
the gain vector g is, explicitly,

n
~ wii-1
g = - ) @ o AT, (20)
i=]

The execution of (20) on a digital computer, via
Leverrier's algorithm for finding the ¢; from A,
takes but a few seconds. As a self-check, the
authors' program also computes A = At+ag® and
then reapplies Leverrier's algorithm to verifg that
the synthesized A agrees with the specified A.

Observability and Practical Asymptotic
Realizaiivn oi Iideai System by
Lowest-order Feedback Filter

The utility of the gain vector g computed by
(20) might be doubted, in that for large n not all
state-variables x; may be measured by convenient
instrumentation. Typically, the only available
system output is a set of m independent, known
linear combinations of the x;, say

y; < B x, (i=1,---,m; l<=m<n). (21a)
Thus the output-vector y is defined by
y = H*, H = (-, n™), (21b)

where the known n X m matrix H has rank m<n.
The system is no longer defined by (8)-(9), but by
(21) together with

% = Axtay , b, = Fly). (22)
where {, attime t is no longer a function of the
instantaneous state x(t), but rather a '"functional"
(operator) on y which depends not only on y(t), but

also on its past history {y(7)[0=sT=s t}.

The most precise approach to filter design is
based upon Kalman's generalization [18] of the
Weiner -Kolmogorov theory of optimal extraction of
signals from noise. It can be proved [1~9], [20] that
when the choice of the ideal system %= Ax is opti-
mized according to a quadratic performance crite-
rion, the problem of optimal choice of Y, in(21}-(22)
can be split into two separate problems. The first
deals with optimal choice of g, and the second deals
with real-time minimal-variance unbiased estimates
R If y=H*x+w where w is a Gaussian

X of x.
white noise process of a priori known spectral
power density, then y, =g+ % It can be proved
{unify [12],{18] as in [19]-[20]; then specialize to
the autonomous case as in [3)]; finally, convert to
scalar form, as in (16), by transformations analo-
gous to (17)}that the optimal control law {, can be
synthesized by feeding back the observed outputs
y. through a suitable passive linear filter as in
igure 1. (The p,(s)are physically realizable trans-
fer functions having the same poles but different
zeros.) However, such a filter requires n poles
for an nth order system. Unfortunately, for large
n this approach, although precise, is impractical
in many applications.

Abandoning the attempt to estimate {, opti-
mally, a somewhat more economical realization
theory may be developed [16] wherein the number
of filter poles is equal to n-m. In this theory,
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Figure 1. Closed loop system,

the ideal closed-loop system (including filter) may
be specified arbitrarily.

For both theories [18] and [16], an essential
hypothesis is that of plant observability, defined as

rank[H, A'H, (8%)%H, ..., (A" H] =n  (23)
The present theory, however, is based on ideal-

system observability

rank[H,(A)H,(A)%H, ..., B H]=n  (24)
and is essentially different from the others. [ Note

that either (23) or (24) may hold while the other
fails.] It will be shown that if m 22, (24)yields
[(n/fm)-1] <n (25)

where n-v is the number of filter poles required.
Often, n-v can be arranged to equal or approxi-
mate the lower bound in (25).

-v<n-m

Refer to the configuration of Figure 1. In
terms of Laplace transforms it is clear that

S
g (s) = p-(S)y-(S)
the P; (s) the open-loop filter poles, and 1et them

Call the common poles of

be the roots of a polynomial A (s) = =0 stJ

S1m11arly, let the zeros of P; (s) be the roots of

(i)(s) _OstJ (i=1,2,*-,m). Then pi(s) =

A(i)(s)/An-v (s), and in the time-domain the com-
plete system is given by (8), (21b), and
m
8, _,(d/dty = iZIA(i)(d/dt)yi. (26)
Applying the transformation (17), the system
reduces to the scalar form
A(d/dt)e1 = s (27a)
I 3 (1 52903 -1)
A = S -1
_, (drany, izzla(i)(d/dt)j;(h 5,2)) (27b)

where 9[ i] = dlel/dtl. From (27) it can be seen

that

&, @/dre, = o, (28a)

m

n
& i j-1
3, (s 8 asa_ (s) -éla(i)(s)j;l(h-sja)s (28b)

where EZn-v (s) is a polynomial of degree 2n-v
whose roots are the actual overall system poles.

Let the open-loop filter poles (Ap-, ) as well
as the ideal system poles (A) be specified arbitrar-
ily. Then the only unknowns in (28) are the poly-
nomials A ), (i=1,2,:--, m), whose determination
completes the design of the feedback filter. For
physical reallzablhty of the filter alone, 0< v, <
n-v, {i=1,2,"**, m) must be satisfied.

As part of the closed-loop system, the filter

will be said to realize the ideal system if
L(8) = Als)a _ (s), (29)

where En—v is a Hurwitz polynomial whose roots
will be called the closed-loop filter poles. The
realization will be called asymptotic if the open-
loop and closed-loop filter poles tend to coincide
when the real parts of either set are moved uni-
formly toward negative infinity,

Assume the va11d1ty of {24) and seek an asym-
totic realization in which & and Ap _y are specified
arbitrarily, and the coefficients vy;; of the A(j) are
determined as linear combinations of the (arb1trary)
coefficients Y; of Ap.y. The relation between Yij
and the y, will at first be inferred from a heuristic
argument; then it will be shown that a filter designed
by this method’is indeed asymptotic.

Referring to (27b), attempt to choose the A( )
so that

m -
(d/dtig-x) = ), Ay)(d/dt)hl-x).  (30)
i = O

This could be true identically if x=x(t) solved
x=Ax exactly; but note the transient introduced by
the filter. Proceeding, however, on this "asy'm-
totic" assumption, dix/dtl = (&), holds, with x°
arbitrary, and {30) reduces to

m

L Eg = 2 a (AN (31)
i=1

7 K (AFyPY
n-v = (g, Ag, - (A7)

and, noting the corresponding dimensions, define
matrices and vectors, for (i=1,---,m), by

: & 3
Define r = (Yo, Yy Y ). Q

Kié b, Y, (B9 ), [nx (v, + 1] ;
di e (YiO’Yil'n.'Yivi)*' [l)((vi+l)];
K &K, K ) and d2[@)" - @™

Then the condition (31) can be expressed as Kd=Qr.
The smallest n-v must satisfy n-v = max{vl,m, vm}.

On the other hand, for K to be an nXn matrix, the
dimensions vj must satisfy n = (v1+l)+ (v2+1)+ e 4

(v t1) or v1+ v2+ +vm =n-m. From this (25)
follows immediately. If vy=v,=-- =y, then

v =[(n/m) -1] = n-v. Note that the columns of K can
bé arranged at will if the elements of d are adjusted
accordingly. In particular, generate a new matrix
K as follows.



(a) Start with the columns hl, n2, ... nm,

__(b) Adjoin to this the columns (!, (B nE,-,
(A*)hm one by one, checking that each new column
is linearly independent of the previous ones. (Use
the Gram -Schmidt orthogonalization procedure. )

(c) If any of the new columns is found to be
dependent, omit it from the matrix and go on to the
next.

(d) Continue adjoining columns until n linearly
independent ones have been found.

(e) After (ﬁ* )hm has been tested, continue with

@92, e, @2, @3l e, @™,
(.Z;* )n-lhl, -, (A* )n-lhm.

(f) If a column (&*Yn’ has been skipped
because of linear dependence, all columne of the

form (A*)Lh‘] where £ > i can be skipped, immedi-
ately, since they also must be dependent on the
previous columns.

When observability applies in the form (24),
there must be n linearly independent columns in the
matrix K generated as described above. If d is
the correspondingly ordered vector of n unknowns,
the system Kd = Qr can be solved for the elements
of d, which (after appropriate re -ordering) define
the numerator polynomials A(i) of the desired feed-
back filter.

Previously, it was required that the filter in
question obey (29). This can be verified by an
algebraic manipulation which is both tedious and
rather subtle. Indeed, it can be shown that Ay,
and Ap.y are related by the equation

n-vy m
- ki t k-i
Yio T Vi +kzi v A a)l;*’zk(h <A a)  (32)

for (i=1,2,+-,n-v), where now one defines y X = 0
for k>vy. From the form of (32) the asy'rnptogm
equivalence between A, _,, and A, _,, follows
readily.

Optimal Choice of Closed-loop Poles

Up to_this point it has been shown that, given a
desired A(s), a unique gain vector g can be found
{20) so that the ideal system

% = Ax = (A+ag¥)x = Ax+a¢o, ¢0= g-%, x(O):xo
(33)

is sy;qx‘xthesized by Y, = g-x. When only an output
y=H"x is observed, |, can be asymptotically syn-
thesized as =Z¥(y) by means of the feedbackfilter
(26).

For large n, however, the available arbitrari-
ness in specification of A(s) constitutes an "embar-
rassment of riches.'" To remedy this, the question
of choosing a control law that will optimize some
performance criterjon will be considered. For
present purposes define this criterion as

.3 =-}f0(x-cx+ q,oz)dt, c=c¥z0, (34)

and call the control ¥, "optimal' if it minimizes (34).

The choice of an appropriate matrix Cis impor-
tant. It must be done in the context of a specific
problem. For example, in aerospace vehicle

. -

stabilization it may be required to maintain certain
quantities |q*-x|, {i=1, 2,---,m), such as "struc-
tural load", ''pitch error'!, etc., below stated
bounds while minimizing the i over future
time of some critical quantity ]qﬁ'1 .x|, such as
"ateral drift." The important minimax control
problem may be solved to a first approximation
[exact solution requires nonlinear feedback]bynoting

N @ o~
that, in the integral fo(qm-x(t)/xo)zdt, the total

contribution of times at which quﬁ cx(t)] > Kk, holds is
"penalized' disproportionately in comparison to that
of times at which lqm -x(t)| < Kk, holds. Hence it
would be desirable to find a performance criterion
which minimizes the above integral while at the

+ .
same time maintaining f w(ql-x)zdt, (i=1,2,-,
+@
-1} and fo 42 dt within required bounds. All this

can be accomplished by defining

A *

c 8 xlql(ql)*+---+x._qm(qm) (35)
m

in (34). If m = n, and the q1 are linearly independent,

C is positive definite. The theoretical development

of this case is more straightforward than that for

which f < n and C is only guaranteed non-negative

definite.

Another approach to choosing C can be found
in the "implicit model reference' method mentioned
by Soviet authors such as Aizerman. Basically, it
is desired to force 6] =b-x to behave in the mean
like solutions of Ag(d/dt)6; = 0 where Dg(s) is a
Hurwitz polynomial of degree f <n. Using (17) it
is clear that Ag(d/dt)e; = %Aﬁ(A* )b] - x whence the
matrix C to be used in (34) is

c 2 qq*, q 2 aga%b. (36)

The first general results on the solution of the
problem described in (33)-(34) are due to Bellman,
Glicksberg and Gross in 1954 (c£.[9]). After slight
modification of their derivation, it can be shown that
their work gives, for C >0

b, = 2P (37)
where the ''co-state' vector p satisfies the two-
point Lagrangian boundary-value problem defined by
(1) and

5+ (A% -CACHp - c(AC A* +aa*)p = 0, x(+2)=0.
(38)

However, the numerical methods they suggest for
solving (38) apply only for fixed x° and do not yield
(37) in the feedback form q;o(x) needed for synthesis.

In 1960, Letov [21] implicitly assumed con-
trollability via the use of Lur'e coordinates [10] and
improved {(37) by showing that under slight restric-
tions there exists a constant matrix B such that

p= -Bx, (39)
whence the optimal control law determined by (34)
is linear:
4, = g % g= -Ba. (40)
Letov applied the classical Euler-Lagrange neces-
sary conditions to (33)-(34), and expressed the

result in Hamiltonian form [readily seen equivalent
to (38)]



x x afA aa®
< = H< ) H = . (41)
P P c, -a
After defining Azp(s) 2 get {sI2, - H) and showing
that A (s) is a polynomial in even powers of s
only, he concluded that if the roots of this polyno-

mial are distinct and non-imaginary, the n Hurwitz
roots are the optimal poles of (33)-(34). Hence

- n < ~
A, (s} = (-1)"A(-s)A(s). (42)
An explicit expression for Ap,(s) can be
obtained in the following way:
Define -1
I, (sI-A) aa*
K = ) (43)
0, 1

where det K = 1, and argue that
A2n=det[(slzn— HK] = .
= det (sI-A)det[(sI+A*) - C(sI-A) aa*]=
= A(s)det (sI+ A¥)det[I-(sI+A¥)1C(sI-A)laa*] -
= (-1)"A(s)A(-s)det [I-{"H-s YA (- )IC{T(s VA (s )} aa*

Application of (13) then immediately yields the de-
sired result

8, (s)=(-1)"[A(s)A(-s)+a-T*(-s) CT(s)al. (44)
The results (39), (40), and (42), (44) actually

apply when the roots of A2p(s) are non-distinct and

when C is only non-negative definite, provided that

x +Cx is the square of an ''observable'' quantity.

This can be deduced from Kalman's nearly definitive

studies [12],[3], which combine Pontriagin's neces-

sary Maximum Principle [17] with the sufficient

Hamilton-Jacobi partial differential equation [9].

Kalman shows that the optimal control law for

x = Ax+a{g.x) defined by the criterion (34) is given

by g = - Ba, and is stable if there exists a symmetric

B > 0 satisfying

BA + A*B -Baa*B = -C. (45)
Under these conditions, the function x-Bx is a
LiaX\mov function for the closed-loop system
x=Ax; and B must be given [9] by
@©
B = [exp(A*t)[C + gg*] exp (At)dt. (46)
0

Furthermore, &= &(x°) =1x%. Bx® and p= -grad & =
- Bx satisfies the necessary condition
mqa;x Hx, p, y,) = 0 where

o

A
HE pr(Axtay ) - B)x-Cx+y2). (47)

Although Kalman suggests a method for finding

g explicitly (integration of a matrix-type Riccati
differential equation), a more efficient approach,
for (33), can be obtained by combining his work
with that of Letov and (20) above.

The results (45)-(46) are equivalent to (41), (44)
as can be shown by the following argument. Rewrite
(45) as B(sI-A) - (sI+A*)B = C - Baa®B. Premulti-
plication by-a*I"*(-s)/A(-s) and postmultiplication
by (T(s)/A(s))a yields (after multiplication by
-A(-s)A(s) and substitution on the left of g = - Ba)
the result -a*l‘*(-s)gA(s) -g*r(s)aa(-s) =
a*r* (-s)(C - Baa*B)"{s)a. Now adding A(s)A(-s)

to both sides and rearranging gives, after use
of (12),

A(s)A(-s) = A(-8)A(s) + a-T*(-s)CI(s)a
which is exactly equivalent to (42), (44).

Note that since the A(s) determined from (48)
by construction must be Hurwitz, (46) must yield
a B>0if C> 0 and so (48) is totally consistentwith
(41), For a semi-definite C, additional conditions
must be satisfied to ensure that B > 0, Consider
the polynomial a -I'*{-s)CI'(s)a. Then for C 2 0,
a-r*(-s)Cr(s)a = Ay(-8)Ag(s) where Ag(s) is a
polynomial of degree fi < n-1 (<n) whose coefficients
M, are readily computable. Now define a vector q

by the relation Ag(s) = EI,1 lpisl-l 4 q+:I'(s)a. Then
1=

=g Sia, (i=1,2,*",n), or (Sla, e Sza)*q =g

where § denotes the vector of coefficients of Aﬁ(s).

Applying (18b), it is clear that q = Ag{A* )b. Thus

(49)

This important result shows that, by(48), the matrix
C can be replaced in ® by a new matrix defined as
in (36) without affecting the determination of the
optimal control law. In other words, minimizing
the ® of (34) is exactly equivalent to minimizing the
simpler performance criterion

(48)

a -T¥(-s)CI'(s)a =[q:-T{-s)a){q- T(s)a].

+o
o =if(a-x)? + (g- 22, (50)
0

Then in (46), B > 0 unless for some x° # 0,
(g'x)=0and (q-x)= 0, 0 <t <+w, Butin this
case, x(t) = exp (At)x° = exp (At)®whence the deri-
vatives of q-x at t= 0 become [(A¥)i-1q]- x°,
(i=1,-+-,n). Now assume that q:x is observable;
that is

det[q, A¥q, "',(A*)n-lq] 40. (51)

Then q -x = 0 implies the contradiction that x° = 0,
i.e., q-x=0is impossible and B > 0.

As an alternative to (51) in checking that q-x# 0
when g-x= 0, consider the following argument.

By {12a) and (17), if Z(d/dt)e1 =0, then
g-x=0= [g-. 1"((1/dt:)a]61 = A(d/dt)el = 0,(52a)

Similarly, from (36) and (52a), wheng+x=0
is satisfied,

q-x = 0=Aﬁ(A*)b-x = A.(d/dt)e, = 0. (52b)
Now, if Aﬁ(s) isafactor of A(s), Ag{d/dt)8; =0

implies that A(d/dt)el =0, in which case (152b) holds.
Conversely, if the conditions of (52) are both satis-
fied, Af(s) must be a factor of A(s). This can be
shown directly if the eigenvalues {X;} of Op(s) and
those {\j} of A(s) are distinct. Making this assump-
tion, and recalling that Ag(s) = n'i=1[s—’ii], the gen-
eral solution of Aﬁ(d/dt)el =0 is a linear combination
of the solutions of [(d/dt) -’ii]el =0, while a similar
conclusion holds regarding the solution of

A(d/dt}8; = 0 and those of [(d/dt) - A;]61=0. This
implies that the A\;,{(i=1, 2,+:-,fi) are included in the
A, i.e., Ag(s) must be a factor of A(s).

In order to extend this result to the general

case, define a 4 (@ ,a, -+« )". Then
o’ 1 n-1



Py A
the companion matrix C of A or A is defined as
usual by C = (e2, ---,e™, -a)f¥. Now it can be shown
(cf. techniques of [10]) that, referring to (18b),

[q.’ A*q! th (A* )n-lq] = L[a: e*,\v A (a*f‘-la]’
(det L = 1/detD #0), (53)

where ’c} is as defined after (48). By controllability
and {18b), the observability condition (51) is equiva-
lent to

det[§, €%§, -, (€9™714) 4 o. (54)
Thus (54) is now sufficient to show that A/ﬁ(s) and
A(s) have no common factors for distinct rogts of
these polynomials. However det[§,C*q,--,{C*Mm-1q]
is a multinomial in Bj and aj only; thus it must be the
"resultant'' (the general condition for two
polynomials to have no common factors) and so (51)
is saiisiied if and oniy if Ag(s}) is not a factor of
Als).

It remains only to develop criteria for A to be
Hurwitz, which are based on lecture notes distributed
by W.M. Wonham at Purdue University. [In these
notes, Wonham overlooks the necessity of a test of
observability of q -x.] If the open-loop characteris-
tic polynomial A(s) has no purely imaginary roots,
(48) can be written as

1ZG P = 146w ?+ |a- T (olal?z |aGe?> 0,
o cw<to, j=N-1,

This guarantees that none of the roots of Agp(s) are
imaginary; hence A(s} will be Hurwitz. Furthermore,
if
Sla-CSla > 0 (55)

is satisfied, an open-loop pole at w= 0 does not pre-
vent A(s) from being Hurwitz since

E(©O)220+]q-T(0)al? = (S,2)-C(S,2) > 0. (56)
Thus if the open-loop system has no imaginary poles
except possibly at s =0, in which case (55) is
assumed to be satisfied, A(s) must be Hurwitz.

These concepts are now unified into an actual
design procedure.

(2)

Choose an appropriate matrix C by the
methods of (35) or (36) above.

Compute A(s) by Leverrier's algorithm (7).
Find the roots of A(s) = 0. If A(s) has
purely imaginary roots (other than s=0)

modify A until it has none. If A(0) =0,
also check the condition

(Sla)~ C(Sla) >0;

(b)
(c)

if it fails, modify C until it holds.

(d}) As explained above (49), compute the
vector q= Aﬁ(A* )b such that
a-T*(s)CT(s)a = [q-T{-s)allq- C(s)al=

A
= Apl-s)ogls).
(e) Find the roots of Ag(s}=0. If Ag(s)is a

factor of A(s), modify C until it is not.

(f) Compute the polynomial A, (s) by the

following explicit expansion of (44):

-1
Als)a(s) = a2+ ) &.sPe (1P als®®, (57a)
[o] i'—'l 1 n
i-1
A a2 j .
@ 2 ('”1%*2.; (-1)Jaja21_]., (i=1,++,n-1), (57b)
max (n2z2)
{0,2i-n)

a-T*¢-s)CT(s)a = (S,2)-C(S,a) +

n-2
i n-1 -
+ Y e s () (a - Ca)s?™; 2
i1 {57¢)
& i _
€ = (—1)(Si+la) C(Si+la)+
il
1) . i=l,e .., ne
+2 2 (1P(85,12) ClS ;5@ (i=he o, ),
(57d)

(0,21%0+1) (n=3)

(g) Alternatively, Leverrier's algorithm can be
applied to the 2n X 2n matrix H of (41) to

give A, (s).

(h} Find the roots of Ap,(s), and from the n
roots that have negative real parts generate
the unique polxnomial A(s) such that

Aop(s) = (-1)PA(-5)&(s).

Insert the coefficients of A into {20) to find
the desired optimal gain vector g. In
practice it is useful to compute a one-
parameter family of gain vectors, say

g = g(p-o), by replacing C with p,C,

0< Ho < to, and letting Bo vary over the
positive real numbers.

(i)

Intrinsic Adaptivity to Actuator Saturation

In engineering practice, of course, actuators
are linear only over a finite range and have limited
amplitude. By renormalizing |l a| if necessary, it
can be assumed without loss of generality that, in (8),

lo I=<o,- (58)

Hence it is of great interest to study the behavior of
(8) under the control law

3, ¢

1< Py <T@

posat[uo(g'X)/pO], (59)

1
2 < p0< + o, (60)

where sat[Oo] 29 for |90| < 1 and sat[eo] = sgn[eo]
for |90| 2 1. Note that if instead of (60) one requires
(61)

then there is a clear physical interpretation to (59)
and (61); in fact,

lsp <+, 1sp <+to,
o o

fp'o = u g %), lg-x| = lpg/e,)s (62)



v .

* i.e., the control law (59) is linear at least in the
region

<
Il = (o 7n, el (63)
while increasing #_> 1 is the same as increasing
!:he control 51gn'al gain ”g” and increasing p > 1
is the same as increasing the actuator amplitude
a

Use of (59) permits what seems to be the first
unified theory of linear, linear-saturating, and
bang-bang control. Clearly the extremes are

Mo=1, p,=+o, (LINEAR CONTROL,J_=g-x) (64)
Po=1, K =to, (BANG-BANG CONTROL,

J_ = sgn[g-x])(65)

[o]

There are two important performance criteria
applicable to (8) and (59), namely
+w 2

e - /O[X-cX+(g-x) Jdt, (66)

and the largest number )\o > 0 such that for some

Yo 21,

=@l = Ix®llyg exp (- 6), (0st<+a), (67)

whenever
1=l = o7y Il

Referring to (45), and using x - Bx as a Liapunov
function, it can be shown that if g = - Ba is computed
as in the procedure above, the system (8), (59), (68)
is asymptotically stable on (60), |[x°<2 po/(Yo ligll).

(68)

Moreover, neither performance criterion &, or
)\o is degraded by allowing Por Mo to vary on (61)!
This truly remarkable property of the gain

vector g = g(a, A, C) obviously enhances the practical
usefulness of the design procedures developed above.

Conclusions

A unified practical algorithm for the design of
lowest-order [physically realizable] asymptotic
realizations of ideal optimal control systems is
obtained by combining the just-listed procedure
(a)-(i) with the procedure (a) - (f) preceding (32).
The authors have implemented this in a digital com-
puter program. Inputs to the computer are plant
matrix A; actuator vector a; sensor vectors hl,hz,---,
h™; performance vectors q1,9%,---,q™; trade-off
coefficients K1» Kp,--+, Kg; and filter poles A, _y, (s).
Outputs are optimal filter zeros A(i (s), (i=1l,::-, m)
for asymptotic realization of the syszem which (in
the mean-square) minimizes the performance index

2 2
K@ %)+ ky(a% )P e bk (@ x)2

Appendix

R.E. Kalman has stated that he learned (13)
from [1][2], but subsequently encountered instances
of its use by Caratheodory without comment (cf.[22],
p. 342). Kalman has kindly supplied the following
proof, which is amusing, but technically less ele-
mentary than that given here. Since there must
exist (n-1) linearly independent vectors ul orthogonal
tod, (I+cd®)ul = ul+(d-ui)c = ul; hence I+cd* has
n-1 eigenvalues Aj=1, (i=1,2,--,n-1). Now

1

whence det (I+cd*) = )\l)\

10.

11,

12,

13,

e )\ X = - )\ =
A+ At (nl)+n

tr (I+cd*) = n+d-c,

A = = .
2 )\n-l n )\n 1+d - ¢,

Notational Conventions

Matrices are upper case letters.

Vectors are lower case unsubscripted or super -
scripted letters. Scalar productis-.;|x[|28x. x.
Scalars are subscripted lower case letters.

Exceptions to these rules are i, j, k, 1, v, n,
which are used as summation indices or
scalars; s which is a complex scalar; A(s)
which is a polynomial in s; and t which denotes
time. Also ® and?#are scalars.

The ith column of the identity matrix is
represented by el.

The symbol 2 denotes equality by definition.
The symbol = denotes identity,
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SUPPLEMENTARY NOTES ON ADAPTIVITY ANALYSIS



SUPPLEMENTARY NOTES ON ADAPTIVITY ANALYSIS

Assume that the control law for
x = Ax + al (1)

has been formed by the optimal methods of the previous section. The
effects of increases or saturation in the feedback signal or in the actua-

tors are considered here. In general, let

{ = p sat (ng-x) . (2)

If Ig.xlSp/u, orifp — «

\ymug.x. (33-)
If |g-x| = p/d or ifu — =
I ~p sgn(g-x), (3b)

and so the possibility of linear and bang-bang control are included

in (2).
EFFECT ON STABILITY
Asymptotic stability for a system
% = £(x) (4)

is ensured in the domain determined by V(x) < ¢ where V(x) is a

Liapunov function for (4) and € is a positive constant if

Vi(x) <¢ V(x) <0. (5)




- ]

Now let

1
V—E‘X‘BX (6)

be a Liapunov function for (1). Then

\'/':%(Ax+a¢)-Bx+%x-B (Ax + al) (7)
- %x-(A* B + BA) x + x-Bal .
Apply (2) and
—C=BA+A B - gg¥, (82)
g = -Ba (8b)
to (7) and obtain
vV = _lx-Cx+'l—‘(g‘X)2 - p (g-x) sat nd M (92)
2 2 P
or
. 1 1 Mgex
V:-Ex.cx_—2-|g.x| 2p sat 5 - legex|p . (9b)

The control | is linear when
H .
— ox | <1,
> leex |
Then (9b) gives
. 1 1
V:——Z-Xocx—zlgoxl {(2“-1) |g-X|},
and stability is ensured if

(10)

N =

o>



Similarly, the control is saturated when

L Jgex] > 1 (11)
Then
o Lcn-Llgxl{zo - lgex) 12)
__Zx. x-zg. p - g ,
and
lg.xl < 2p (13)

is necessary for asymptotic stability.

To establish sufficient conditions for a region of asymptotic

stability in this case, consider the lemma

(x-Ba)® € (x.Bx) (a-Ba), (14a)

where
B=B" >0, (14b)
a #0. (L4c)

Proof: If x and a are linearly dependent, the equality sign obviously

holds. Alternatively, if x and a are linearly independent, let
ud (x-Ba/a.Ba)a, vhx- u # 0. (15)
By direct substitution
veBu=u.Bv =0, (16)
and so

x+Bx = (v+u) « B(v+u)=veBv+u.Bu>u-Bu (17)




-

Thus by (15)
2
x+¢Bx > (x+Ba) " /(a.Ba), (18)
and the lemma is proved.

Now by (8b) and this lemma,

I g.xl 2 < (x+Bx)(a.Ba). (19)
Then if
2
(x+Bx) (a+Ba) <(2p)~, (20)
2
_1l_ o o _ _2p
V—ZX-BX I Ba (21)
must imply that
vV <0, (22)

and asympotic stability of (1) with saturated control will be guaranteed

in the region where

o o 4p2
X «Bx < B (23a)
or equivalently where
o -4 2
a.g

(See Table I at the end of this appendix. )

C-13



EFFECT ON PERFORMANCE INDEX

oo}
@(XO) = %f (x-Cx + (g-x)z) dt (24)
o
Since from (9a)
R | 1 2 Mg.X 5
-V —ix-Cx—E(g-x) +p (g.x) sat 5 (25)
{Z4) becomes
[ee]
3(x°) = f { -V o+ (g.x)2 - p (g-x) sat (“gp”‘)} dt (26)
o
[e9]
1 o o o X
=5 X «Bx —f |g.x|{p|sat (ng >|-|g.x|}dt
o
Thus the performance (in the sense of (24) is not degraded if
lg-xl {p sat <&—%—}5>|— lg-xl} >0 (27)
Now, for
l—g—“ p'Xl 2 1 (28)

(27) is valid if

|g-x| < p (29)
which implies that p. = 1. For

|f*—gl < 1 (30)

p
(27) is valid if
oz 1 (31)




which implies that
lg x| = plg-xl=

Summary of Results

p

(32)

Always sufficient for system stability p>1/2; x-Bxc< _g?gZ
Always sufficient for undegraded o> 1 Ig . xl < p
performance index

Control is pure linear if o8 Ig- X l < p

Control is bang-bang if Mo |g- X l > p
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ON SYNTHESIS OF OPTIMAL BANG-BANG FEEDBACK CONTROL SYSTEMS

WITH QUADRATIC PERFORMANCE INDEX

R.W. Bass and R.F. Webber, Guidance and Controls Division, Aerospace Group
Hughes Aircraft Company, Culver City, California

Abstract

This paper extends the work of Wonham and
Johnson [1], who found the nature of the optimal
control on the singular strip for a given quadratic
performance index. Their solution required a spe-
cial preliminary transformation to phase coordi-
nates. In this work the optimal control is found, on
the singular strip and in a neighborhood thereof,
without the use of their special transformation. The
optimal control law off the singular strip takes the
form sgn o(x), where o(x) is a power series in the
state vector, x. The terms of o{x) up to and includ-
ing those of the third order are found.

Introduction
The work [1] is extended in several ways:

(i) Avoiding the change from state-variables to
phase coordinates gives the present work complete
generality, which is mistakenly claimed by [1]: the
alleged reduction of the integrand of the quadratic
performance indexto a nonnegative definite weighted
sum of squares in [1] is incorrect, in that some of
the weighting coefficients may be negative, as
simple examples show.

(ii) Computation of the plant's open-loop poles
is avoided: the '"singular control' gain vector is
derived in terms of quadratic matricial equations
closely related to those of optimal linear control;

(iii) The nature of the singular regime (linear)
control in an (n-1)-dimensional strip near the origin)
is completely explained by exhibiting a linearly
switched bang-bang system, optimal near the origin,
whose chattering regime [2] gives an average motion
(the André-Seibert sliding regime*) which is
identical with the singular regime;

(iv) A method for computing the coefficients of
a multiple power-series in the state-variables
which provides the local optimal control switching
signal as an explicit feedback law is developed.

In [1], the optimal nonlinear control law is
described implicitly by means of the familiar
Hamiltonian Two-Point Boundary-Value Problem
[4], whereas the present approach leads to an ex-
plicit solution of the equivalent Hamilton-Jacobi
equation,

Principal Results

Let the system to be controlled have the state-
vector form

;<=Ax+a¢0, x(0) = x°, [A:(Aij), a=(a)] (1)

where the feedback control law = ¢ _(x) must
satisfy ° e

ly <1 (2)
and, for some free terminal time T, 0£T<+o,

%{t)—~0 as t—T, . (3)

*Kliger[IO] calls it the slippage regime.

while at the same time minimizing the performance
index T

o=1 (x-cx)at,
0

(c=c*>0)! (4)

where C is a given positive -definite symmetric
matrix.

We shall prove that, in a sufficiently small
neighborhood of x =0, the optimal feedback control
is precisely

Y, = sgnfc], o= gex, (5)

(where as usual sgn[¢] = o/|0|), where the gain
vector g is defined as follows.

Let
A
P =1 -[1/(a" Ca)laa*c, (6)
A
so that P is a 'projection matrix' with the properties
A A A A %
(B)2=PB, Pa=o0, (P ca=o. (7)
Let
B=B*>0, det(B) = 0, (8)

be a non-negative definite, singular symmetric
matrix satisfying

B(AP) + (APJB - [1/(a- Ca)] BlAaa*A")B =
= -C +[1/(a-Ca)] Caa*C, {9)
as well as the constraints
Ba =0,
(Aa) B(Aa) = - (Aa)- Ca'.fm

It was established in [1] that the condition of
controllability [see (40) below] together with C posi-
tive definite are sufficient for (9) to have a solution
B with the properties stated in (10).

(10a)
(10b)

Then the desired g will be given by
g=-(1/Na-Ca)(BA+C)a,

which, by (8) and (10a), has as a corollary
La~g = -ANa-Cac< 0.]

It should be noted that, by (11b), and [2], use of
the control law (5), (11) must always lead to an end
point x!, namely, a time T, >0 and state x* such
that

(11la)

(11b)

&) - x| = -a-g=la-gl, (12a)
x(Ty) = x! (12b)

As first noted by Fliigge-Lotz [3], the solution
x(t) of the system (1), (5), (11) cannot be defined

TThe notation of this paper will correspond as
closely as possible to that of [7].



for t >Ty, because the relay ¢ = sgn[o] would begin
to ""chatter" at ¢ =g-x*., This difficulty was over-
come in an elegant theory by André and Seibert [2],
who assumed a small time-delay T in the relay,
namely (t)= sgn[v(t—‘r)], and derived the limit-
motion x(t), for 0 < T, ft<+o, as T—0.

It turns out [2] that this sliding motion takes
place in the hyperplane-strip

g-x=0, |[(A%)-x[s-a-g, (x=Px), (13)
and is defined for T st<+® by

x = PAx, x(T,) = x1, (14)

P=In-[1/(a-g)]ag*, (15a)

Pa= 0, P*% = 0. (15b)

Note, however, by (15a), that
PA = A -[1/(a-g)lag*s = A+a(-[1/(a- g)la*g)} (16)

and that, by (13}, (|A*g~X|/la‘g|) =1

Hence the sliding regime can be regarded (and,
using dual -mode control, synthesized), as a linear
control system of the form

1

)'c:Ax+a®o, gx=0, x(T,)=x (17a)
N A

srarx, [ l=1, (17b)

q= -A*g/(a-g)+xg (17¢)

-0 < NLOO
We shall prove that the system (17) is asymptoti-
call'r stable on g-x = 0, and that

g-xl =0 (18)

- 1 o1

Q* = fT* (x-Cx)dt = x -Bx",
where B is given by (9} - (10}, and where the feed-
back law $o = q+x actually minimizes &, under the
constraints || =1, g-x1=0. Furthermore it will
be proved that (17) is identical with the singular
regime of Wonhamand Johnson. [ADDED IN PROOF.
Since this paper was accepted for presentation, the
comments ['0] of Kliger have appeared. Kliger
makes a statement similar to point (iii) above, con-
cerning implementation of the singular regime by
means of a chattering regime. However, he does
not mention the André-Seibert theory (14) - (15},
and fails to prove the all-important results(11b) that
a-g < 0 and that the system (17) is asymptotically
stable on g-x = 0, which will follow from (22)below;
the arguments of {10] do no more than prove that if
a-g <0, the system (17) has end-points [2, 3] which
is necessary for stability but not sufficient. ]

Firstly, rewrite (11) as

‘f-g)g=(BA+C)a, (a-g)2=a-Ca. (19)
Now, using (19), and inserting (6) into (9), re-
arrange {9) to show its equivalence with

BA + A¥B = -C + gg* . (20)
By (10a) and (16),

BPA = BA . (21)

Hence (20) can be expressed as

Ea(pA) + (PAY*B = -C + gg* . (22)

Also, by (14) and (15b), , .
%(g.x):g-)‘c:g-PAx: (P*g).AxEO, (23)
so that g .x1 = 0 implies that

(Tyst<two) . (24)

Multiply (22) on the left by x* and on the right by x,
and note that, on g+x = 0,

gx(t)=0,

o, =x-Bx. (25)
By (14), (25) implies
&, = x-(BPA + A*P*B)x = -x . Cx , (26)

whence, integrating, one obtains
t

x(t) . Bx(t) = x) - Bx! - .

T*(x-Cx)dt , (27)

which shows that, on (24), x(t)—~0 as t—+=. This
proves {18}, The minimality of (18) was proved by
Wonham and Johnson; hence, it remains only to
identify (17) with their singular regime, which can
be done by comparing (18) and (19) with the equa-
tions (23), (27), and (35) of [1].

By (19) and (17c¢),

N +"~é
q=-[1/(- g)]A*gA=(-[l/(a .gN3(A*BA + A*C)ap(28)

Hence, using (20) after multiplying on the right by
A, (28) gives

(a-Calg = -(A*BA + A"Clat R g(a-Ca)=
= (Ba% + C4 - A*C)a - (g.Aa)gmgm)
or A= h(a-Ca)

(a.Ca)q = (BA% + CA - A*C)a (30)

But (31) is a consequence of (10b) and (19). Hence,
(29) holds. The equations (19) and (30) give g and q
according to [1], while the preceding argument has
shown their consistency with (17c¢).

if

It is easy to give a direct proof that (17), (19),
(22), (30), (31) correspond to singular control. By
(1) and (4), and the Maximum Principle [4], define
a Hamiltonian by

#:x-A*y+(a-y)$o—%X'Cx. (32)

The Hamiltonian canonical (variational) equations
associated with (32) are

x = Ax + a®0 = grad(y)y, (33a)

1

y = -A*y + Cx = -grad(x)?’/", y(T) =y (33b)

Singular control occurs when A= 0 by virtue of,
separately,

a-y=0, (34a)
x-A*y 2 ix-Cx. (34b)

Now assume that
y= -Bx, la-y'=0, Ba=0). (35)

Clearlya.y = -a-Bx = -(Ba}.x = 0.

Similarly, by (20) and (35), equation (34b) holds
on the strip (13). But we have already proved that



@ = q-x implies that the system (33a) is asymptoti-

c8lly stable on (13). Furthermore, by (31), (19),
-and (30), equations (33a, b) and (35) imply that

a-y=(a-gig-x), (36a)
a-¥=[(a-Ca)q - (BAZ + CA - A*C)al-x = 0. (36b)

Hence g - x1= 0 implies that a-y= 0, whence (35) is
in fact a solution of (33a, b)-(34a, b) for $o= q-x.

Optimal trajectories outside of the singular
strip (13) can be obtained by the flooding technique,
as noted in [1]. Since application of the results of

1] require a special coordinate system, whereas
the present formulation is completely general, the
flooding procedure will be described in the present
notation. (A discretized version of flooding is well
known as Dynamic Programming [5].) Since a-yis
to vanish only at isolated times, the Maximum
Pr  iple 4] is applicable. The optimal trajec-
toi.es leading to the singular strip are generated by
starting on the strip and integrating the Hamiltonian
(canonical) equations backwards in time. If the
terminal state x1 is an arbitrary point on the
singular strip, then the corresponding terminal co-
state yl = -Bx! is known by the preceding charac-
terization of the matrix B. The (optimized)
Hamiltonian is therefore

B=x.-A'y+ |a.y| - ix-Cx,

where the result

(37a)

Yo = sgnia.vy] (37b)

is a consequence of a.y # 0; now integrate

-%x = Ax +asgnla.y] = grad, ,#, x(0)=x!,(37¢)

(y)
-y = -A¥*y+Cx-= -grad(x)# , y(0)= yl-—- “Bx!, (37d)

for 0 =t < +o. Every state x(t) attained in this man-
ner will have as its co-state the associated y{t), and
the optimal control value ¢ = sgn[a - y(t)].

The preceding flooding method (37) is just a
technique for solving the Hamilton-Jacobi partial
differential equation, &= 0, by the method of
characteristics. In fact, outside of the singular
strip one has

4, =sgnla-y]l = -sgn[(a. grad )] (38a)
y = -grad(x)d) , @ = o(x), (38b)
#:—Ax-gradd>+Ia-grad@l-zix-CxE 0. (38¢)

These equations can be re-written in the form

(Ax + aeo) cgrad @ = - %x - Cx, (39a)

¢ = -sgnla.grad @] , (eg= 1) , (39b)

o
grad ® = Bx when g-x=0, |A*g-xlsla»g|(39c)

where, in the notation of stability theory, (39a) is
equivalent to
&= -1x.Cx, (394)

namely, & is a positive-definite Liapunov function

whose Lie derivative is the negative-definite function

- (M)x - Cx, and where the integration of the partial
differential equations (39a) - (39b) is to be per -
formed subject to the boundary conditions (39c).

Numerous publications in this field have stated
that explicit solution of (39) is a "hopeless'" task.

However, by using some new results of Bass [6]
(see also [7{ - [9]), the partial differential equation
(39) can be solved explicitly in a neighborhood of

x = 0, as will be shown.

The computation of certain auxiliary vectors
and matrices is a preliminary step.

Define the controllability matrix (Kalman) by

D= (a, Aa, A%, ..., A" 1) (40)

and assume, as was done implicitly in assuming
solubility of (9) - (10), that det D# 0. Then a vector
b exists which is defined by

b=(D H*e™, (D%=e=(0,0,---,0, 1% . (41)

By*definition, b has the property that b.Al-1a =
-1p]. a = & 41:5 80 1
[(AMi-1b) . a = &;,. (6, 81;6, 40,i#n.)

It can be shown [ 7 ] that if one defines a phase
variable 6} by setting

8 =b-x, (e[i] = d'e, /dt =[(a%)'] -x ,

1
(i=0,1,-+,n-1) (42)
then the system (1) is equivalent to
n
= il _
A(d/dt)e, = Zaiel =4, (43)
i=0

which is in terms of the phase-coordinates 07,
P 1
61,:-+, el[n-l] , instead of the state variables

X],*++,Xp) where the aj are defined by
n
As) = det(sln -A)= Zcxisl , (44)
i=0

and where the inverse of the change of variables (42)

is given explicitly[7] by

n
x = {r(a/are Ja = z G[Ii-l]Sia , (45)
i=1
n
re)= ystls, (46)
i=1

Here, if Zdenotes Laplace transform, and s the
complex Laplace variable, the polynomial A(s) is
the open-loop characteristic polynomial of (1), and
the matrix I'(s) is the numerator of the open-loop
matrix transfer function G(s), which is given by

_ -1_ g Aty _ I(s)
Gs) = (sI - A) " = L™} - O (47)
where the theoretical definition of the matrices Si is
n
Si:z”jAJ” . (i=1,2,+-+,n) . (48)
j=i

The definition (44) requires n! multiplications and
for large n cannot be used to compute ;. However,
the coefficients @; and matrices Si can be computed
in about n4 multiplications* by the algorithm7T:

*For example, a Hughes computer subroutine finds
(@i, S;) for a 10 X 10 matrix in about 5 seconds of IBM
7094 time. Leverrier (1840); cf.[7].



(49a)

n n n
an-j: -{1/j)trace (Asn—j+1) R sn—j: an-jIn+Asn—j+l ,
G = 1,2,"'<n) (49b)

whose accuracy can be checked by thefact that
So = 0 should hold (Cayley-Hamilton theorem).

Now define vector transfer functions v(s), u(s)
by

n n
v(s) = Is)b = Z zsi-lak(A*)k-ib =

i=]1 k=i
n n
= Z<§a sk'J>(A*)J'1b , (50)
.k
j=1Vk=j
n n .
wrsl-h ‘s
u(s) = I'(s)a/&(s) = Z 2‘ Z(s—)jajAJ a=
izl j=i
n n .
k-j .
-1
B 2( Z"k[Z(s)DAJ a, (51)
j=1 k=j

and note that {(by the Cayley-Hamilton theorem which
gives (sly - A)T(s) = A(s)ly), the following results
are identities:

A¥v(s) = sv(s) - A(s)b, Au(s) = su(s) - a, (52a)
u{s)-b = 1/A(s) . (52b)
Also, it can be proved [7] that

D= (a Aa ..., A" 1a)7!

vis}).a =1,

= (STb, -+ e,SED)* L (53)

and, analogously,

(b, A%, -, (&%) 1) 2 (518,05 a)" L (54)
Hence, if the vector transfer function w(s) is defined
by

w(s) = (Sla,---,Sna)*V(S) , (55)

it will be true that [multiply (50) by (54)]

n n

w(s) = Z( aksk-3>e'] , (56)
j=1Vk=j
where the ) are the fundamental unit vectors
(I, = (el, - -, em).
Next, compute a sequence of numbers {ﬁi}
recursively by

ﬁ_V:O, (v=12++.,n-1}; [30:1’ (57a)
v-1
P, = - Z"Hn-vﬁi , v=1,2---,n), (57b)
i=0
ntv-1
ﬁn+v = z @ P (v=1213, Yy, (57¢)
i=v

and note the resultant identities [7],[8]

1/a(s) zﬁjs_(n+j), (for |s| > p defined by (66)) ,(58)
j=0

b'Aj_lazﬁj-n’ (j=1,2,3,++-). (59)

Define a new set of state variables ¢ = ¢5(x),
(i=1,2,-+-,n), by

-1

D "x= (¢1,¢2, . ",¢n) s (60a)
and note that by (53) and (42),
n
x=>oala, ¢ =(Sb)x, 8 =0 .  (60b)
i=1
Further note that by (46), (50), (53) and (602},
n
£ (s) S y(s) x = thisl'l . (61)
i=1

Since £ ic an arbitvaiy cuiuplex variable, (ol) is
equivalent to the set of conditions obtained by
equating the coefficients of like powers of s, i.e.,
(61) is just a condensed statement of (60b).

Now multiply (1) scalarly by v(s) and use (52a)
and (42) in order to verify that if x = x(t) satisfies
(1), then £, = £5(s,t) = v(s)-x(t) satisfies

dgo(s)/dt = s&.o(s) + 4;0 - A(s)d)n . (62a)

Again, (62) is just a condensed statement of the
differential equations
¢l = %%, o

b =0 may 16, (=2,3,00,m),

1 1

(62b)
(62c)

obtained by equating coefficients of like powers of
s.

The motivation for the preceding derivation of
(62a) is that, in the special case when the roots
1"k of A(s) = 0 are distinct, one can define

vavig) . o = ((at)a ] uleley

(i=1,2,---,n), (62d)
g = viox = B (62¢)
and obtain from (52},
A).'vi = Xivi , vi-a =1; Aui = )\iu? ,
Wb /a0, =120 m) (620)
while (62a) becomes the Lur'e canonical form
éi”‘igi*%’ i=1,2,*"",n). (62g)

Thus, (62a) is a generalization of the Lur'e canoni-
cal form, valid whether the roots )‘i of A(s) are
distinct or not.

Next, assume that
and, in particular that

is piecewise constant,

Lbo:eo,eozl, ((o:+l or(O:—l). (63)

If £, satisfies (62), (63), it will henceforth be called
£, = £o(sie,) . Define a function

K =K(s,go)z (eo/s)log[l+eos§o(s;(o)] . {64)




and note that k is analytic in x; for

Ixll< 1/ %te,) sl =

n ,n
\“/(po) = Z( z |ak
j=1Vk=j

For future reference, choose

(65a)

(65b)

|p:-3>nA||J'1||bn.

>[all (2 max

I |
1=1’...,n 1 ’

o A()\i) =0). (66)
Referring to the n new state variables ¢; = (S’{b) . X
of (60) and (62b, c), note that they can be related to
the state variables xj and phase coordinates

61[1‘1], (i=1,2,--,n) by the following explicit and
uniquely invertible transformations [ g]

n
_ [j-1]
¢i = 20361 s

(i=1,2,---,n), (67a)
j=1
n n
x = Zni)iAl_la - z e[ll'l]sia , (67b)
i=1] i=1

zﬁJ anoiel 0 @=L 2ore,m), (670)

and that the functlon k{s,£ o) can be [8] expressed in

terms of the ¢; = $j(x) as follows. Define w;=
wi(x,e0) recursively by
wl = ¢1 , (683)
“v ” —2 bv-dlo, ;4=
v-1
‘o
=0, -2 ijj(;, P R !
3=1
n
_ o -
“ntv - "h +vz (ntwv- J)wn‘*""jd)j B
=1
ntv-
‘o . _ 6
5D Joibnp, g (= 12300 0). (68c)
Then it can be proved [6],[7], [8] that
K(s,go(s;eo)) = (eo/s)log[l + eosgo(s;eo)] =
< 1
~ v
= > wlxie)s (684)
v=l
Now we are in a position to define certain very
important functions o; = o;(xj¢_) by
J J o
sj—ll
oj = r)j(x;(o) = ZTT'\/—-_I_‘I |— A(s) K(s,éo(s;eo))ds s
sl=e,
(3=12,---,n), (69)

and note that the oj{x;¢) are analytic in x on (65).
Using (58) and (68)], it is easy to prove by the
calculus of residues that

[oe]
lTj(X;Eo) = Z ﬁiwi+n-j+l(x’eo) =
i=0
j-1 2
ol -1 4 o(flxf?) =
= L85 To]x e (x- @ + OClxlP) , (702)
Q = @y la - o Yep!, (70b)
where the i,jtl‘ element of E is defined by
iped = L=
e -Ee’l = ﬁi+j-n , {1,3=1,2, ,n) . {(70c)
When the )\i are distinct,
n
_ __1__1 i
b = ZIA'(xi)" (704)
i=1
n
. P
_ i i, ik
Q= Z|A'(>\.)l" wH* . (70e)
i=1 !
Now define the nonlinear vector function
p = plxse )
by
p = plxic)) = (ol )y o e )Y (71)

and note that

2
p = plxie) = (b, A%, -, () ol + ollx[) . (72)

Consequently, the transformation

o= plxie), o= (0,0, e ), (73)
has a unique inverse 2
x = h{ose ) = (Sla,~--,Sna)0'+O(”0'” ) . (74)

for all ||x|| sufficiently small. It can be shown [8]
that this inverse is given explicitly by

1 ¢
x = h{ose ) = .Zn_ﬁﬁshp :O{exp[eow(s) - o]-1lu(s)ds =

n n . n i-1
?" EOZ <Zaksk-3>,,_ 1 <Z[Z(S)]Sia>ds,
=1 \k=j Nz

ZTr\/ 1
Isl=p,

(75)
and that the transformations (73) - (74) are reci-
procal for all x on (65), i.e., that

x 2 hplxie )ie,) » o = p(hlose dic,) (76)
for all |x|l < l/p v(p ). Furthermore, it can be
proved [7] that

det (ho_(o.;f)) = det (D) , 7



which re-emphasizes the fact that the condition of
controllability det (D) # O plays an essential role in
the construction of (69) - (71), and (75) as reciprocal
transformations; in other words, controllability is
sufficient for the functions o; = crj(x;eo) of (69) - (70)
to be "functionally independent'’.

The significance of the ¢.'s is that o}, 05, ",
Onh-1 are first integrals of

) 2
x-Ax+aeo , (Eo— 1) (78)
while oy is an isochrone [8]. That is, by sub-
stituting (78) - or its equivalent, (62) - into (64) and
(69), it is easy to verify that

0, j=1,2,+++,n-1
(rj(x;eo) = dcj(x;eo)/dt = eoﬁjn = (79)

1, j=n.

Another interpretation of (79) is the equivalence

p— :
)';:Ax+aeo, x = h{g) ,= &:soen, ¢=p(x).| (80)

In other words, the nonlinear change of state
variables

x; = hy(o), 00,0 e ),

n’ o 9 = pi(X;Eo) ’

(i=1,2,-++,n),
""rectifies' the phase-portrait of (78) for I || <

1/po ¥{po) by transforming the "streamlines'' of
(78) into parallel straight lines.

(81)

Using (80), it is possible to solve the Hamilton-
Jacobi equation

® = (Ax + aeo)'grad(x)<I> = -w(x), @©(0)=0,]| (82)
by noting its equivalence to
% = n . = - =
2= ¢ce grad(o_)é F(h(c)) , ¢(0) =0, (83a)
or
8<I>(rr1, cee, O'n)/a(rn = —eo\I/(h(u TR Un)) .| (83b)
In the present case, ¥ = (}/;)x-Cx. Hence the
general solution of (83} is [clearly 8%,/80, = 0]
d = @0 + ‘Dl R (848.)
o =9 (v 0,000 ,0 ), @ = &ls,7 o) (84b)
Sn
= _ (Y N . P
2 (1) eo,/(;[h(gl’ ’o—n—l'zn) Ch((rl’ ’U—n-l’zn)]dzn’
(84c)
where @O is an arbitrary function.
It remains only to specify &5 = ®,(0j,+++,0,_1)
in order to have found the solution of (82) as
2= @O(Ul(X;eo), o ',an_l(x;eo)) +
oo (ke ) (ke ) (85)

However, the preceding theory of the singular
strip has shown [{1) - (37)] that if

v o=zu (x)=¢ for 0=t =T and
o o

o *

g x(T)=0, [a*g-x(T)|=|a-gl ,

and

L
Y, = 9%, q=-(a-g) "Afgpfor Ty<t<+o

then [integrating (82) for 0 = t = T_and adding (18)]
+c0

o = o(x7) = L[ [x(t)-Cx(t)] dt (86a)
is an expression for the solution of
b= (Ax + a¢o)~grad(x)d> = - (12)x - Cx (8 6b)
in a neighborhood of the points {x(t) |0 = t < + w}.
Hence (by the "Principle of Optimality' [5])
s(x!) = @(x(T) = ()l Bx' 87
and so (85) must have the boundary values
®(x) = (1/;)x - Bx, wheng:x=0,
|a*g x| = |a- gl (88)
By (74) and Sn = In’
x = h(ﬂ’l, s, crn) = (Sla)cr] +ooeet (Sn_la)o-n_l + ag +
2
+o(lle %), (89)

whence, by (11b)

g-x = (g- Sla)crl+ coetg - Sn-la)o'n-l - <\/E—~—C—5)u'n +

2
+o(liel™ .

Since a-Ca # 0, the standard expression for the
reversion of power series applies to give an analytic
function <I>n = Qn(crl, (R ’Un-l) such that

(90)

gx=0e>0_ =28 (o, ",0 ), (91a)
o = [(g- Sla)/ a- Ca]al+- -+{(g- Sn_la)/\la- Ca]vn_l+
+0(lls -0 ™% . (91b)

Hence if |||l < min(1/p,%(po), |a-gl/IIa%ell ), the
desired function &, is [by (88) and (91)] given
explicitly by

2,= (ahlop, - o)+

’o-n-l’q)n) +Bhoy, o n)

@ (o, e L By) (92)
Using (84) and (92), we may define an analytic
function

o= (x5 ) = a'grad(x)@ , 2=t @, (93)

such that, by the Maximum Principle, in the regions
< # 0 it will be true that

(94)

€= —sgn[oo(x;eo)] , (ef =1).

Note that o, is a multiple power-series jointly
in the (n+ 1) variables ¢, and xj; because ¢5< = 1, the
series for o, can be collected into the sum of two
series having the form

A -
o, = rro(x;eo)— u’o(x) + eocro(x) s (95)
where go(x) and 7,(x) are analytic functions of x,
independent of ¢,. If the inequality
~o <|F, (x| 19,001 (96)




defines a region which contains a neighborhood of
x=0 (i.'e., ||x]l < Yo for some y, > 0), then in this
neighborhood (with its intersection with the singu-
lar strip deleted) the optimal control law will be
given by
A
, = - senld (x)]. (97)

An alternative approach to finding the switch-
ing function makes use of the fact that, outside of
the singular strip, the switching surface must be a
first integral of (78}, for an appropriate ¢ =1,
Hence the surface must be given by brancfes of

@(x;eo)

A

(o) (xiey) <o+ Lo (xie))) = 0, (98)
AA

where ®= ®(z,,+++,2z,_1) is a suitable analytic func-

tion. (Just us% (82), with ¥ =0, to get ®=0,) The

function ¢ can be determined from the obvious

boundary condition that the set of % such that

A
<I>(<rl, e, a—n_l) =0, o, =&I>n(0'1, cee, o-n) (99a)

must contain the set (''edges'’ of the singular strip)

o =@ (o, 0,0 ), (A%) k(oo Lo )=t(a-g).
(99b)

Hence we can choose

gtE (A*g)-h(ﬁ:"' .’a—n-l))i(a.g).
(100)

The use of (93) - (97) will now be illustrated by
an explicit power series expansion through terms
cubic in the %

Using (74), (91b), and (70a), we have from
(93) and (54)

o = ™ grad @ = 28, /3¢ = - 6.?0\(‘1’,," .q-“\)g

n n
- ()¢, ), > [a-stCsale o + o(lsl) =

oy 0 @plogs e

i=1 j=1
= G\o + eoa—o (101)
where [after some algebraic manipulations]
50 = -(l/z)x'CX+O(”x“3)) (102)
n
8= - > x-Qu(Cs.al-x) + o(llxl ). (103)

i=1
Assuming now that the lowest order terms de-

termine the relative signs of T, and 0, it is clear
from (93) - (97) that

n
€ = sgn z(x-Qix)([CSia]-x) s

° (104)
i=1
whenever
n
x-Cx Q) z (- Q[ CS,al-x) . (105)

i=1

Conclusions and Epilogue

The properties of the optimal control in a
neighborhood have been described. This control is
obtained by using certain closed form nonlinear
transformations. The method is an analytical ver-
sion of obtaining optimal trajectories off the singu-
lar strip by the method of flooding. It should be
emphasized that the solution to the problem pre-
sentedis localin nature and could be investigated by
simulatiorn to find out empirically its global validity,

The authors have recently discovered how to
find the optimal control for stable plants off the
singular strip for performance indices of the form

T
[4,,tat,
0

2
where ¢2v(x)ao, v=2,+++, and liZV(px): W V¢2V(x).

That is, {, 's are positive semi-definite homo -
geneous multinémial forms of degree 2v. It is
interesting to note that the optimal control off the
strip in this case is of the form

-sgnfa- grad(x)cbzv(x)]

where ¢Zv(x) is a positive semi-definite homoge-
neous multinomial form. That is, the argument of
sgn consists of only one term of a power series and
not an entire power series. These topics will be
discussed in a forthcoming article.
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APPENDIX E

ABSTRACT
FOR

OPTIMAL NONLINEAR FEEDBACK CONTROL DERIVED FROM
QUARTIC AND HIGHER-ORDER PERFORMANCE CRITERIA®

by
R.W. Bass and R.F. Webber

Just as minimization of quadratic performance criteria leads to
linear feedback, so it is shown here that minimization of integrals con-
taining quartic or hexadic terms in the state variables leads, respectively,
to cubic or quintic feedback. This idea is extended to the minimization
of integrals of arbitrarily higher order combinations of the state variables,
which is desirable in order to impose inequality constraints upon the state
variables. Such laws are shown to be adaptive to actuator saturation
(including even bang-bang operation). These results are proved by
exhibiting a closed-form solution of the corresponding Hamilton-Jacobi
equation, which also provides a globally valid Liapunov function. Prior
results of Kalman, Haussler and Rekasius appear as special cases. A
new constructive procedure for computing the coefficients of the higher
order feedback terms is also presented, together with a numerical appli-
cation which illustrates remarkable effectiveness in the reduction of
overshoots as compared to optimal linear control.



OPTIMAL NONLINEAR FEEDBACK CONTROL DERIVED FROM
QUARTIC AND HIGHER-ORDER PERFORMANCE CRITERIA¥

R.W. Bass
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Culver City, California, U.S.A.

and

R.F., Webber
Hughes Aircraft Company
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Introduction

The problem of state-vector feedback control
of autonomous, completely controllable linear
plants is considered. It seems possible to
generalize the following results to multi-channel
controllers, but here only a single control vari-
able will be considered. The results derived
herein are a natural generalization of results of
Kaliuan? for quadratic_performance criteria and
of results of Haussler ! and Rekasius8 for quartic
performance criteria.

The present point of view is somewhat differ-
ent from that of Haussler and Rekasius. Whereas
they seek to minimize a quartic criterion subject
to a mean-square constraint on the amplitude of
the control variable, we impose an additional
mean-square-amplitude constraint, namely on
what turns out to be the nonlinear feedback part
of the control variable. To this problem anexact
(not merely "'sub-optimal') solution is obtained.
By noting that the lower-bound of a nonnegative
quantity in the present work is zero, The
Haussler-Rekasius quartic upper-bound follows
from the present results, while their lower-
bound in this context is a consequence of the
well-known results on quadratic criteria. There-
fore the Haussler-Rekasius results on quartic
criteria constitute a genuine corollary of the
present completely general results.

The present generalization does not seem to
be trivial, however. Firstly, the methodTs 8 of
regarding a quartic form of degree n as a sum of
N = (n+2)(n+3)/4! squares of quadratic forms
seems to us algebraically awkward and more
cumbersome to apply numerically than the
present technique, as well as unsuited to exten-
sion to hexadic and octic forms. Secondly,
although the first part of our Theorem 1 can be
derived using the Haussler-Rekasius approach7,8,
their measure of ''sub-optimality'' seems to us
unconvincing because for arbitrarily largeinitial
conditions not only the absolute difference §-¢
between their upper and lower bounds_on the per-
formance criterion & (namely ¢ < & < ) can be
made arbitrarily large, but even the percentage
difference [($/8) - 1] can be made arbitrarily
large; and so the formal reason advanced by them
for choosing such a control can be made arbi-
trarily irrelevant (despite their excellent success
in a numerical example 8). In fact, the striking
success of the numerical examples given by
Rekasius® for n= 2 and by ourselves below for
n=3 seem to be interpretable more conveniently
in terms of an optimality attained than a ''sub-
optimality' which turned out to be better quanti-
tatively than one had any previous, rigorously
valid reason to expect.

1"Work performed under NASA Contract NAS 8-11421.

Practical Motivation

This investigation was motivated by a desire
to consider the minimax criterion of optimality,
namely

min max @(x(t)) (1)
¥ t
where ©(x) denotes a positive definite scalar func
tion, x the state vector, t time and V¥ the control
to be chosen. In practice this criterion may be
approximated by the criterion

mwiln f;m [cp (x(t)):| ’ at

for large integers V.

" Correspondingly, one is led to the general
problem of minimizing performance criteria of
the type

(2)

+

@(x“):/ Y(x(t))dt , (3)
0

where ¥ is a finite or infinite sum of positive-
definite homogeneous multinomial forms of
degree 2V, (v=1, 2,3, -+ ), which constitutes
the subject of this paper.

Notation will be established, certain known
results reviewed, and certain constructions of
multinomial forms defined. Principal resultsare
stated in the form of two theorems, whose proofs
are given in Appendix 1. An effective numerical
procedure (leading to a computer-oriented system
design technique) for finding the required coeffi-
cients of higher-order forms is derived in
Appendix 2. This design procedure is applied to
a third-order numerical example and the results
of a computer simulation of the resulting system
are presented in Appendix 3. Conclusions follow
the main text,

Preliminaries

Vectors are n Xl columns unless otherwise
stated; vector or matrix transposition is denoted
by * and scalar product by ; thus, the
Euclidean norm x =x%*x=x-x. Equality by
definition is denoted by 4 .

The performance index to be minimized is of

te ¥ dt defined in (3) above, with

N 1
= S (&) )

v=1

the type ¢ =_/E)

where

A

v, = x-Cx , (C = Cx >0} , (5)

is a given positive-definite homogeneous quad-~
ratic form, and where each ¥py= Vavix}is a




positive semi-definite homogeneous multinomial
form of degree 2V, (v=2, 3, 4, --:). (In other
words, Y2v(x) 20, and pv(ux) =p2Y y2y(x) for all
x and all ©=0.)

The system evolves in time according to
Xx=Ax+ay , x(0)=x°, (*=d/4t)

(6}
where x is the system state vector, A is the n Xn
plant matrix, a is the actuator vector, and V¥ is
the scalar control law to be chosen in feedback
form ¥=1¥(x). Itis assumed throughout that (6) is

controllable, ? in the sense that the vectors Al'la,
(i=1, 2,-+-, n), are linearly independent. Con-

trol laws are admissable only if they produce
asymptotic stability of the equilibrium state
x=0; in particular, it is required that

x(t) 40 as t*+ = (7)

This stability will be established by explicit con-
struction of a Liapunov function V = V(x), of the

form
A L
ME Z (zv) Pav @
v=1
where
®, & x.Bx , (B=B*>0) , )

is a positive-definite quadratic form, where each
P2v = P2y(x), is a positive semi-definite homoge-
neous multinomial form of degree 2V,(Vv=2,3,4, -+ 1),
and where Liapunov's stability theory 1) 2 is
applicable by virtue of the fact that the Lie
derivative of V(x) along the vector field (6) is a
negative-definite function, namely -Y(x) -(Ba.x}F.
In other words, = ¥(x) will be so chosen that
whenever x = x(t) satisfies (6),

V(x(t)) = -¥ (x(0) - [gx())? (10)
where
gl-Ba . (11)
Note that
grad(x)V(x)=Bx+ Z (21-—\)) gradCPZV(X) ,
V=2 (12)

whence, using the definitions (11) and

©

q’n& é - Z (Zl_v) a.grad 9, (13)

V=2

it is clear that the scalar quantity

@

Gé -agrad V = - Z (ZLV) a-grad szv
=1 (14)

can be expressed as
c = g.x + WnL(x) . (15}

The quantities 0 and Y4 are important in forming
the optimal control law V¥, and the definitions
(13)~(14) and identity {15) will be assumed hence-
forth and used repeatedly in the sequel without
further reference.

To recapitulate, the matrix-vector pair (A, a)
and the functions {¥,y} are given, while the func-
tions {c,o;_v are to be constructed by algebraic
operations upon (A, a) and the coefficients of

{¥20); then V(x) = 2| (1/2V) ©,\(x) is defined by

(8), and the functions 0(x) and Vnif{x) are to be
found from the definitions (9), (11)-(15).

The method of computing the {szv} from the
Wz\,} will be prefaced by a special case, namely
computation of ¥ = x.Bx from {3 = x-Cx. This in
turn will be motivated by reviewing the well-
known results of Kalman3 regarding linear
regulators.

Quadratic Performance Criteria

Consider now the case where

1 1
Vv = —_ [ .
A_sz ZXCx , (16)
and choose § so as to minimize (3) subject to a
"mean-square amplitude' constraint on V¥ of the

type
+
%/ v dt < p; = const. (17)
0

By the Lagrange multiplier technique [absorb the
multiplier into C, by allowing C to be multiplied
by any positive scalar without loss of generality ]
the minimization of (3) and (16}, subject to the
constraint (17), can be replaced by the uncon-
strained minimization over ¥ of

+o
5= B(x°) = %/ [x.Cx + V2] at
0

(18)

It is well known3 that the solution to the problem
of choosing V in (6) to minimize the ¢ of (18) is
given by

b= gx

(g = -Ba) , (19a)

(19b)

min ¢ = §(x) = %X.Bx ,

where B = B¥ > 0 is the unique positive definite
solution of the (equilibrium) matrix Riccati
equation

BA + A*B - Baa*B = -C . (20)
Inserting (19) into (6) displays the controlled

system in its ''closed-loop form' as a linear
system

%= Ax+aV = Ax , (21)

where by definition

KL Atagt=a-aa*B , (22)
and where A is known to be a stability (Hufwitz)
matrix, On subtracting -Baa* B = -gg¥* from

both sides of (20), and defining the positive-
definite matrix C by

c e C+ gg* , (23)
equation (20) becomes
BA+Z*B =-C, (C=8x>0) , (24)

which has the well-known solution®

+ o
B =B%* =/ exp (K*t) c exp (Kt) dt > 0
0 (25)

A highly practical, purely algebraic algorithm

for computing g (without first finding B) is given
by Bass and Gura4; from g, both & and C can be
found readily, and then B can be computed from



(24) either by the inversion of a matrix of order
1/2 n(n+1) as in Bellman3 (p. 231), or by the
technique of Appendix 2 below. Alternatively, a
purely algebraic algorithm for computing B
directly from (a, A, C) which involves multiply-
ing a 2n X 2n matrix by itself (n-1) times and then
inverting a matrix of order n is given by Bass?.

Note that, on recalling ¥ = x-Bx and defining

Sy %) + (@x)% , g= -Ba , (26)

2
the algebraic equation (24) takes the form {just
premultiply by x* and postmultiply by x ] of the
partial differential equation

Kx.grad ;Oz(x) = —Wz(x) . (27)

A Theorem of Liapunov

Equation (27) illustrates a classic theorem of
Liapunovl, 2, which shows that if A is an arbi-
trary stability matrix, and if ¥y(x) is any posi-
tive semi-definite homegencous inuliinumial form
of degree 2V, the partial differential equation

(v=123:."),
(28)

has a unique solution ¥y(x) which is also a posi-
tive semi-definite homogeneous multinomial form
of degree 2V. A new practical algorithm for
solving (28) is given in Appendix 2. Henceforth
it will be assumed that the {sz\;} are constructed
from the H’ZV} inaccordance with(28), for
vV=2,3,4.--.

Ax-grad @, x) = -V, (x) ,

Summary of Algebraic Constructions

To recapitulate, the pair (A, a) is given
together with the forms WZV}- First B=B(A, a, C)
is constructed so that A=A -aa*B is a stability
matrix satisfying (27) with

cpz = x-Bx , VZ = xCx + (g'x)z
N (29)
Then this A and the N‘ZV; vV=2,3,4,+-" } are
used to construct the remaining {C{JZV ;v=2,3,4, -}
so that (28) holds. Now V(x), 0(x}, and ¥4 (x)
can be constructed as in (8), (13), (14), and will
henceforth be regarded as known quantities.

Principal Results

Consider the choice of ¥ in (6) to effect mini-
mization of the general ¢ of (3), subject to the
constraint (17) and an additional constraint of the
type

4o

%/ [an(x(t))Jz dt < p, = const.  (30)
0

The constraint (30) is at this stage admittedly a
somewhat artificial condition, justified only
because it permits an explicit, closed-form solu-
tion of the problem at hand. However, it will
turn out a posteriori that yp¢(x) happens to agree
with the nonlinear terms in the optimal feedback
control law ¥{x); hence the physical meaning of
the two independent constraints (17) and (13) is
that the "'mean-square-amplitudes' of both the
linear and the nonlinear terms in the optimalcon-
trol law must be a priori bounded separately.

Once again, the Lagrange multiplier tech-
nique may be used to formulate an equivalent
unconstrained problem, namely, that of choosing
the control law ¥ in (6) so as to minimize the
unconstrained performance criterion

+ ™
|
t = i(x) E\/ 3:’(x) # et 2L
0 (31)
It is important to note that &} in (17) and oy in
(30) can be chosen independently and arbitrarily.
At first glance this seems to require an integrand
n (31) of the form ¥ +(1/2)A1 y2+(1/2)A3 ¥nt®.
However, on replacing ¥, by Ay V2, and ¥,y by
J M /Ay Vv for v 22, the quantity Ao "’n’éz is
replaced by A ¥ptl. Hence division by M| yields
an integrand of the form A\ = A2 = 1, in which now
each Yoy, V22, has been replaced by
(1/J A 22) ¥2y. Thus by letting scalar factors
multiplying ¥, and Yoy, V = 2, run independently
over all positive values, all constraints p| and g
will be attained. (In numerical applications of (18}
it is well known that a factor multiplying C must
be allowed to vary similarly in order to insure
attainment of (17).)

Theoiciu i
The optimal control law for (6) relative to
(31) is given by
Vo= ofx) Egxt Vo), (32)
and, furthermore,

V(x°) = min ¢ (x°) . (33)
y

Moreover, the related control law

¥ = o (34)
yields global asymptotic stability of x = 0 for all
u such that
(35)

} Theorem 2

Let

ho> = w>0 , (36)
be arbitrary numbers. Choose € = €(#} > 0 so
small that on the neighborhood of x = 0 defined by

Vix) < € (37)
the inequality
lota| <2 (38)
holds everywhere. Then the control law
v = nsat Luo/an]

yields asymptotic stability of x = 0 on the region
(37).

The practical utility of the preceding results
may be inferred from the application summarized
in Appendix 3.

Conclusions

A completely general algorithm has been
presented whereby nonlinear fcedback laws canbe
computed.which minimize integral performance
criteria defined by multinomial forms of higher
than quadratic order. A criterion of order 2V
yields a feedback control law of order 2V-1,
(v=1,2,3,--+). These results represent a
generalization of the results of Kalman3,
Haussler!, and Rekasius8.

Minimax criteria can be approximated more
and more closely by increasing V; however, it
does not seem practical to take V very large,
because there will in general be N=n(n+1) ..
(n + 2V - 1)/{2V)! distinct nonlinear feedback
terms which must be mechanized.



Practical experience to date indicates very
satisfactory results with v = 2. That is, quartic
criteria will keep the state variables (or linear
combinations thereof) very nearly within pre-
specified allowable bounds, while the required
cubic feedback control law is feasible to
mechanize,.

Appendix 1

Proof of Theorem 1

The law ¥ = 0 provides a unique solution to
the Hamilton-Jacobi equation

H(x,y,¥) =¥(x,y) =0 , (39)
Hix,y) & max¥(x,y,¥), y & -grad?
] (40)
In fact, taking
1y y 1.2 1 2
KMoy hxt(ay) y=¥-—4"-20 07 (41)
and noting that 3%/3Vy = a.y - ¥ = 0 if and only if
y=a.y=-a.grad ® |, (42)
while BZV/B‘UZ =-1<0 at y =a-y, one obtains
¥ (x,y) = Mx,y, axy) . (43)
Hence (39) becomes, by-(42),
2
i!l:y-Ax+l \I}Z-i [W-g-x] -¥=
2 2
~ 1
=y-Ax - W(g¢x) + -i wz ~- % WZ + w(g.x) +

-%(g~x)2 - Y =

= y.Kx Y - % (g.x)z =

®

1z ~ L\rx
s [Ax.grad P,+ ‘U2]+ :éz(zv) [Ax-gradcpzv-wz\/]
=0 (44)

by (27)-(28), provided that it is possible to
identify V and ¢ and so use
L]

1
y = -grad V = - Z (ﬁ) grad @y
v=1 (45a)

V=ay=0=gx+ wn/'(, {45b)

However, comparing (41) and (44), and using (45),
(39) may be expressed as
PO 1.2, 1 2
V = x. dVv=-|Y+2 - } . 46
X.gra [ > Ve o+ > wnt (46)

Thus, by Liapunov's direct method, x(t) #* 0 as
t #* +=, and, integrating (46), one obtains the
result that § = g implies V(x°®) = $(x°).

Similarly, upon choosing ¥ = u0, it can be
shown that

PR SV B z] 1y 2
Vs [t g -(u-z)c Y
This completes the proof of Theorem 1.

Proof of Theorem 2

Assume V(x) < €= €(%) and |c(x)| < 2%. Then
it can be shown easily, using V(x) as defined by
(8) and § = #sat (LO(x)/n), that

V(%) = ¥ ()4 L o2 x)-naysat] Bopa|-Le 20
2 # 2 'nt (48)

Now consider two cases, (i) and (ii), For (i) let

[(u/#) s(x)] < land for (i) let [(n/=) o(x)| = 1.
Then for (i),

U 1y .2

veor a2t (w-2)et (49)
and V <0 when u > é

For (ii),
. 12,1 2
==Y - = — - ¥
\ - R L (50)

and V<0 for |o]| < 2x.
proof of Theorem 2.

This completes the

Appendix 2
A Theory of Higher Order Forms

Presented here are techniques for effective
use of 2Vth order forms. As explained following
(28), construction of an optimal control depends
on solving the equation

Ax.grad $Zv(x) = -'M“ZV(X) , (51)

for 9yy(x). This relation actually represents N
linear equations in N unknowns. It will be seen
in the sequel to (58) below that the dimension N is

n{n+1)... (n+2v-1)
2V !
The unknowns are the coefficients of the different

terms in the 2viB order form ®p(x) and the
knowns are the corresponding coefficients in

N = (52)

V2u(x). Thus (28) may be represented by
db = ¢ {(53a)
where
/ A\
/bl €1
bZ
b = , ¢ = , (53b)
\ SN \ON

and & is an N X N matrix. The bj's represent
coefficients in the unknown ®,(x) and the cj's
represent the corresponding coefficients in the
known Y y(x). In order to solve for b it is neces-
sary, in effect, to invert &. This could be
accomplished by standard techniques. That is,
just write out the relationships involved and solve
for the bi's. This however would require a con-
siderable amount of algebra even for simple
problems. For example, if n = 5 and 2V = 4, then
N = 70.

As an alternative to solving (53a) in this
manner, one might use the spectral resolution of
d. Thus, seek the eigenfunctions of the
operator.

Ax-grad(x)(~ )
In other words, seek homogeneous multinomial
forms (p(x) of degree 2V such that, for (complex)

eigenvalues Wi,

Kx.grad ‘,k(x) = le Qk(x) . (54)

It will be shown that the {;'s can be formed
from products of linear forms raised to various
integer powers. This idea will now be presented
in detail.




Let uX be right eigenvectors of A, let vE be
left eigenvectors of A, and let the corresponding
eigenvalues be A. Then

k

Au = A u© (55a)

X*vk = )\k Vk
It will be assumed that the Ay are distinct
(k=1,2, -+, n); then the {uk}( {vk} are linearly
independent and can be so normalized that

(55b)

oo = 6

W 0 Rdsheen N L (56)

Once the Ak's are known, the calculation of the
normalized uK's and vK's may be easily accom-
plished, e.g., using the closed form expressions
presented by Bass and GuraP®,

Define { g(x) by

N v M 111 m
¢ lx) L owhx) MY (vz-x) L. (vx) nt R
(57)
where the mjt's are integers determined by
n
Z m, = 2V, m, . 20 . (58)
i=1

The expression (58) does not uniquely determine
the mit's. Therefore, let £ be an index corre-
sponding to each permissible set {mil;}- It is
shown in Malkin? that there are N such sets,
where N is given by (52).

Using (57) straightforward manipulations
yield

Ax-grad Cplx) =Ax.grad I:(V1 .x)mH""' (vn.x)mnt] =
= (XX'Vl)mlL(Vl-x;n U%--. (vn-x)an +
+ (;“ix-vz)mz{’(vl -x)mlL(vz.xmZL_l...(vn.x)an.;..... +
+(Exv™m_ (v ) L (vn.x)mn’@'l -
=(m A tmy Ao+ an)\n)(vl .x)mlL_.‘(vn_x)mn‘L:
=Ry Gy (x) (59a)

Malkin? has shown that by letting the mjt's
range over all permissible values, as given by
%58) one does in fact, exhaust all the eigenvalues

u{,j of the operator Xx-grad(x)( - ). If it is effec-
tively possible to expand -V,\(x) in the eigenfunc-
tions {{4] then the equation (51) can be solved for
P2v(x) by identifying coefficients in eigen-

expansions. Specifically, if
N
i) = D v G (59%)
=1
then
N
P, (%) = Z (va/ue) Cylx) (59¢)
4=1
Begin by assuming, for a typical term of
'wZV(x))\' m) mp my
X X, Teexy , A= constant. (60)

Expand each term (60) in eiienf\mctions
as follows. Write for xp m

Moo kT (61)

*k

and then expand eK in terms of the left eigen-
vectors of X, That is, expand ek as

n
ek=zaikv1, (k=1,.--,n) . (62)
i=1

From the theory of matrices one has

n
Le S
i=1

whence

o = @ . G k=le,m . (63)

Thus, by using (61), (62), and (63), kak may be
expressed as
n mk

= (ek-x)mk= z (' eX)(vix) - (64)

i=1

My

*k

Recall now that, by (57), the (vl.x) are the linear
forms used to obtain ({(x). Thus, when (64) is
put into (60) and multiplied out, there results the
desired expansion

N
Syl = ) B, G0 (65)
4=1

In practice, expansion of (60), though straight-
forward in nature, requires considerable sym-
bolic multiplication of multinomials.

A Numerical Example

As an example of the foregoing procedure,
consider the following case wherein n=2. Let

A= (_g _31’ ) ; then the eigenvalues of A *are

-2, -1, and the corresponding eigenvectors are
1 2
1 and K
equation Ax-grad $g(x) = -V4(x) and let Y4(x) =
(x) + x2)4. Then the {y's and Mk's are given by

Now let it be desired to solve the

¢ o= gt L =824t (10O

- 3 _

&, = (xl+x2) (2x1+x2) , uz--'l ,

§3 = (x1+x2)2(2x1+x2)2 , u3=-6 s

Co o= (x4 x,)(2x, + %) W, = -5
4 - 1 2 1 2 ' 4 !

4 -
C. = (2x) + xz) , Hg = -4

Solving for the coefficients in the eigen-expansion
of ®y4(x) yields
1 4
Pylx) = 3 {x) + x,)

An Alternative Procedure

In equations (57), (60)-(64), and (65) a
general method was presented for expanding




-Wz(x) in eigenfunctions. Sometimes it is easier
to accomplish this expansion directly without
recourse to the right eigenvectors {uk]} of A,
which are needed if (63) is used. Again an
example provides a convenient means of illustrat-
ing this. Let

U/4(x) = xlzxz2 + xz4 ,
and let the eigenfunctions be the same as in the
previous example. Then it is only necessary to
write x} and x;, in terms of the linear forms
(x) + x3) and (2x) + x3). The proper expansions
are

x| = (2x1+ x2)-(xl+ XZ) s Xy 2(x1+ xz)-(2x1+ xz) .
Define

A
xl+x2=c1, 2xl+x2

ne
W

Then
5

Vyx) = (B-a)z(za- B)2+ (2a - 5)4 = - z \ATE
L=1

Expanding this expression in @, B and noting that
3

gl = Q , €4 = o B
_ 2.2 _ 3
QZ = a“Bg“, (;5 = aB
4
;=8
yields the desired coefficients Yy Yoot e, Yg-

Appendix 3

Simulated Example of Stability Augmentation
by Cubic Feedback

Consider the system

)‘(1 = X

X3 = -6xl -ll.x2 -6x3 + WnL(x)

If we let x) represent position, then x; and
X3 represent velocity and acceleration, respec-
tively. The object is to choose the feedback con-
trol ‘UnL(x) so that large overshoots in velocity or
acceleration are avoided when the initial displace-
ment is x;(0) = xq, x5(0) = 0 and x3(0) = 0.

As the system returns to the origin xp
(velocity) or x3 (acceleration) may be prohibi-
tively large. It is necessary to apply nonlinear
feedback in an appropriate manner to reduce the
offending state.

To accomplish this, we consider the per-
formance indexes ¢ and ¢, where

2,1, 2
v +EwnL]dt

_ 4, 1.2.1 2
@2_/[x3+2¢+EWnL]dt

Minimization of ¢} or ¢, can be effected by cubic
feedback V.4, where Vpalux) = u3 Vnt(x), and

o
—
1]
o
I
[N
+
N -

where {,4 is defined by Theorem | and is com-
putable as in Appendix 2.

The feedback control §,4 derived from ¢
will keep x3 small, and the control ¥nt derived
from ¢, will keep x3 small. In Figure 1 the
phase-plane plot of xp versus x3 is shown.
Included in this figure is the response of the
stable linear system. The initial conditions for

5 20
the responses are x(0) = (0) and x(0) = (0 ) .
0 0

By examining this plot the reduction in overshoot
of xp and x3 becomes apparent.
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APPENDIX F

CONTROLLABILITY

DEFINITION

The system
x=Ax+ay , x(0) = x° (F-1)

is said to be controllable if for every initial state xo, there is a control
law {= J(t) such that the solution x(t) of (F-1) satisfies x(T) = x1 where

x! is arbitrary and T > 0.

Theorem. A necessary and sufficient condition for the system
(F-1) to be controllable is that
det(a, Aa, "+, A" "a) = det(D) = 0 (F-2)

Proof

Part I — Necessity, (If det(D) = 0 there is an xl such that no

1
control law y(t) can transfer the system (F-1) from some x° to x )

in general, the solution of (F-1) is

t
x(t) = exp (At)x° + f exp [A(t - M) ayp(n)dr (F-3)
(0]

At x(T) = x

T
2 - exp (AT)xC = f exp[A(T - N aw(n)d (F-4)
(@]



Now since

exp (AN) = i Aiﬁk (F-5)
k=0
(F-4) becomes
exp (—AT)Xl - x% - [ i Ak JfT %w(k)d)\] (F-6)
lk:o ©
Now if
det(a, Aa, -+-, A" la)y =0 , (F-7)
the system of equations
(a, Aa, ---, A" 1a)"q = 0 (F-8)

has a solution q # 0. Thus there is a vector q such that

q-a7ta -0 (i=1, 2, -+-) (F-9)

Note that (F-9) is valid for all i > n since by the Cayley-Haminton
Theorem Aj(j > n) can always be expressed as a polynomial in powers
of A less thann - 1.

By (F-6)

q - (exp (-AT)x!' - xo) =0 (F-10)
But this is incompatible with the choice

«l = exp (AT)x® + (F-11)
q




since (F-10) would then imply

+q=20 q=0

Thus the system (F-1) cannot be controllable if det(D) = 0.

(F-12)

Part II — Sufficiency. (If det(D)= 0 there is always a way of picking a

control to transfer the system (F-1) from <2 to xl).

Choose

P(t) = a - y(t)

where y(t) is defined by the solution of

y=-Ay , y(0) =y

Clearly

and so

Now define a matrix P by

T

ES fo)
y = exp (-A t)y

O

P = jﬂ exp (-AN)aa exp (-A \)d\

(o]

(F-13)

(F-14)

(F-15)

(F-16)

(F-17)

(F-18)



Then (F-17) becomes

Py° = exp (—AT)xl - x° (F-19)

If det(P) = 0, the desired control law described in (F-13)-(F-14) will be

completely determined since then

-1 1 o
y =P exp (FAT)x™ - x (F-20)
'I'o consider this possibility, note from (F-18) that

z - Pz = /T(a . exp (-A\)z 2>dx (F-21)
O

Obviously, if
a - exp (<A z) # 0 (F-22)

then z - Pz >0 and P must be invertible. (The determinant of a matrix
is equal to the product of its eigenvalues and since P must have positive
eigenvalues det(P) = 0.)

Assume that
a-exp (<A Nz=0, z #0 (F-23)

Then by repeated differentiations with respect to \

A la) cexp (-A"Nz =0, (G=1, 2, .-, ) (F-24)

Now since [exp (-Aa:)\)]—l = exp (A>'<)\) always exists, exp (—Aq\k)z =0
can only be valid of z = 0. Since this is ruled out by hypothesis,

exp (A" \)z # 0 and (F-24) can hold only if

det(a, Aa, ---, An—la) =0 . (F-25)




Thus if (F-25) is ruled out, P >0 and (F-20)

theorem.

OBSERVABILITY

Theorem. If
x = Ax , x(0) =
rank [H', A¥H", a%)% ¥, .
Then

IIHX“ Z z0

Proof, Assume

||HX“ =0 , x
This implies that

Hx =0
H g—}é =0
Hix—z— =0

dt
H dnr_l:_l}f =0

dt

However, since the solution of (F-26) is

X = exp (At)x°

F-5

is valid, thus proving the

(F-26)

(F-27)

(F-28)

(F-29)

(F-30)

(F-31)



(F-30) becomes

¢}
X
il
>
=z
kS
e}
il
o

o
%
ol
>
R
bl
o
Il
o

(F-32)

-----

If (F-29) is true then (F-32) must be valid for 0 =t =o. At t = 0, then,

Hx =0
HAx® = 0
2 0
HA®x =0 (F-33)

-----

5

(Note: It is now apparent that there is no need to check derivatives of
x higher than (dn_lx)/(dtn—l), for by the Cayley-Hamilton Theorem
Ak (k 2 n) can be found as a linear combination of Aj (j =0, 1, 2, ==+,
n-1), and if x, (dx)/(dt), ---, (dn_lx)/(dt) are identically zero,
(dkx)/(dtk), (k 2 n) must also be identically zero. )

The equations in (F-33) can all be satisfied by a vector x% = 0 if
and only if

H |

rank HA <n (F-34)




Thus if
i< e sk o2 %k fon-1_ %%
rank [H, A'H, (A)H, -+, A" 'H |=n (F-35)

the assumption (F-29) is false and the theorem is proven.
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APPENDIX G

ULTRAMINIMAX CONTROL

Derivation of the control law that causes q - x to decay exponen-

tially from an initial perturbation.

Theorem I. For the system

(o]

5<:Ax+agp , x(0) = x (G-1a)
g=g-x (G-1Db)
the relationship
(@) =(q-x% ™ (G-2)
for arbitrary q and u holds, if and only if
qg-a=20 (G-3a)
g - . Lt .A*)g (G- 3b)
q-*a
Furthermore, the closed loop system
x=Ax +a(g - x) = Ax (G-4)
is asymptotically stable if and only if (q *rs)a/q a) is Hurwitz,
Proof, Using (G-4)
U2 - 1a%q 4 (q - a)g) - x (G-5)



However, if (G-2) is to hold

Ha ) o g - x) (G-6)

Combining (G-5) and (G-6) gives
1ATq + (q - ajg| - x=-plq- X (G-7)

i be valid tor all x if and only if

a

-~
110 o

w =

Using this control it is possible that q -+ x can decay according to (G-2),
while other system variables will grow without bound. To avoid this
difficulty, the characteristic equation of the closed loop system must be
checked for unstable roots before accepting (G-8) as a useful control
law. From Appendix C the closed loop characteristic equation for (G-4)

is given by

A(s) = As) - g - T'(s)a (G-9)
Applying (G-8) gives
A(s) = A(s) + q + (pI + A)T(s)a/q - a (G-10)
Now since
(sI - A)" L 2 r(s)/a(s) (G-11a)
or equivalently,
AT(s) = sT'(s) - A(s)I (G-11b)




" Then (G-10) becomes

or

A(s) = (S+}J,)g;q-r¥-%La- (G-12b)

Thus (G-8) is useless unless (q . l"(s)a)/(q - a) is Hurwitz.

Theorem II.  Choosing

Y =g+ x in (G-1la) so as to minimize

| e 0%+ g 0?a (G-13)
e}

as pz—>oo with q arbitrary results in a stable closed loop system iden-
q y P sy

tical to that requiring

o, ~ut

q-x=(qg-x")e (G-14)

if q - I'(s)a is Hurwitz (i.e., ultraminimax control is the same as

optimal control in the sense of minimizing (G-13) as |¢2 -~ @),

Proof. By Appendix C, minimizing (G-13) gives

0 = A(s) A(-5) = A(s) A(-s) + pz<q : r(s)a)(q : F(-s)a> (G-15)

Assume A(s) A(-s) is polynomial of degree 2n and (q . l"(s)a)(q : l"(—s)a)

is a polynomial of degree 2m where

ms<n-1 (G-16)



Obviously, as pz —», 2m roots of (G-15) approach those of

0= (q : r(s)a)<q : r(-s)a) (G-17)

The remaining 2n - 2m roots are determined as follows.

From (G-15)

A(s) A(-s) - G-18)
(q . l"(s)a)(q - I'(-s)a) P (
By long division this can be expressed as
2n-2m 2n-2m-1
s +Kls t oo +)\2n—2m
-1 -2m 2
RSP A, 8 = -p (G-19)
T 2n-2m .
where the \'s are constants. Dividing through by s and using
the complex variable notation
pl = Rl (G-20)
(G-19) becomes
-1 -2n ekeiTT
1 +)\ls + o +)\2nS ::mn (G—Zl)
Now if
K i 1/2n-2m
s = (e e ) (G-22)

(G-21) is satisfied as ek —+ . Thus 2n-2m roots of (G-15) are given by

the solutions of

+ M =0 (G—23




In general then, the roots of (G-15) are given by the roots of

0= <s?‘n'2m + HZ)<q : r(s)a>(q : r(-s)a) (G-24)
If q- I'(s)a is Hurwitz and m = n - 1
0= A(s) = (s + p)(q : F(s)a) (G-25)

is the closed loop characteristic equation of the stable optimal system.

This agrees exactly with the ultraminimax system for which

(G-26)

Remark. The question arises as to what adjustments can be
made if q ‘1" (s)a fails to be Hurwitz. Consider the equation

(q ‘ 1“(s)«%t)(q . l“(-s)a) =0 (G-27)

It is clear that m roots of this equation must lie in the left half of the

complex plane. From these roots generate the Hurwitz polynomial
2-5. . Sl—l (G-28)

where Em =1, and Ei = 0 for i >m. In general, (G-27) will not
coincide identically with q . I'(s)a.

Now let

a =7 -Sa (G-29)

n
q - ZE.(A*)' b (G-30)



This relationship follows from the identity

(b, A'b, +ee, (A>F)n—lb)(51a, S,a, +++, Soa) =1 (G-31)

which implies
n
q=Tq= @ s (G-32)
i=1

for any vector a: From (G-28) then,

n

n
Z’&isl‘l = z q - sia)sl'léq . I'(s)a (G-33)
i=0 i=0

Thus when q - I'(s)a is not Hurwitz, there exists a vector E such that
the polynomial q + I'(s)a is Hurwitz. Furthermore, by the results
derived in Theorem II, the characteristic equation for a closed loop

system minimizing the integral

fm[(q cx)% + (g - x%lat (G-34)
(o]
is
(s + H)(E{- I‘(s)a) =0 (G-35)
This guarantees that
q-x=(q-x% e (G-36)

for all xo. Note that the system for which (G-35) holds will also

minimize (G-13). In a least squares sense, then, q * x is the '"'closest'

G-6




approximation to q * x which can decay exponentially in a stable closed

loop system.
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ABSTRACT
FOR

CANONICAL FORMS FOR CONTROLLABLE SYSTEMS WITH
APPLICATIONS TO OPTIMAL NONLINEAR FEEDBACK

by
R, W, Bass andl. Gura

Using the assumption of controllability, explicit closed form trans-
formations among four linear canonical forms useful in control system
analyses are derived. The relationships found can be easily programmed
for efficient numerical computation and are also helpful in obtaining further
theoretical results. Indeed, these formula are basic in establishing the
properties of a nonlinear canonical form for bang-bang systems, which on
each side of the switching surface rectifies the state-space phase portrait
of the given system into parallel straight lines. This transformation, in
turn, permits direct integration of the Hamilton-Jacobi partial differential
equation. Furthermore, the feedback law for the classical time-optimal
control problem is shown to have the form of an infinite series of fractional
powers of the nonlinear canonical variables.

H-1



CANONICAL FORMS FOR CONTROLLABLE SYSTEMS WITH
APPLICATIONS TO OPTIMAL NONLINEAR FEEDBACK

by
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Notational Conventions

a. Matrices are upper case Roman letters.

Vectors are lower case unsubscripted or

superscripted letters.

c. Scalars are Greek letters and all subscripted

lower case letters.

Exceptions to these rules are i, j, k, ¢, V, n

which are used a= summailon indices or

scalars; I'(s) which is a matrix polynomial; s

which is a complex scalar; A(s) which is a

polynomial in s; t which denotes time; and 0,

€, 8, © which are vectors.

Asterisks (*) denote matrix transposition.

The itB column of the identity matrix is

represented by el.

g. The symbol 4 denotes equality by definition.

h. Unless otherwise stated, indices will range
over the setl, 2, ..., n.

Hh ®

Introduction

In the analysis and design of control systems
for autonomous linear plants, the utility of
simple explicit transformations between the given
state variables and certain canonical forms is
well known.

It has been shown by Lur'e [1], Letov [2],
and many others, that use of Lur'e coordinates
facilitates explicit construction of Liapunov func-
tions [ 3], thus advancing the study of stability of
equilibrium in dynamical systems.

More recently it has been shown by Bass,
Lewis and Mendelson (4], [5], by Wonham and
Johnson (61, [7], [8], by Kalman [9], and by
Bass, Gura and Webber EIOJ, [11] that use of
phase coordinates permits the fruitful application
of frequency-domain concepts to various prob-
lems of system stabilization and optimization
originally stated in terms of time-domain
concepts.

In this paper a system of generalized Lur'e
coordinates is introduced. Unlike the Lur'e

coordinates, these variables are well-defined
even if the system's ""open-loop poles' (i.e., the
plant's eigenvalues or characteristic roots) are
not distinct. Although many realistic engineering
problems do not have multiple roots, numerous
highly illuminating examples of modern control
theory can be derived readily when such roots are
permitted, Therefore, the complete generality of
applicability of this last-mentioned coordinate
system is important for both exposition and
research on advanced control problems.

It will be demonstrated below that in both
theoretical research and practical design proce-
dures it is rewarding to be able to pass freely
between the above-mentioned coordinate systems
and the state-space of the given problem. Twelve
different linear transformations are needed.
Unfortunately, certain key inverse transforma-
tions have not been available hitherto in explicit
closed form. It has been assumed in previous

control work that matrices involved are to be
inverted numerically, and thus the needed coef-
ficients were then only defined implicitly. This
has led to awkward circumlocutions (e.g., (6],
[9]))and the desirability of closed form algebraic
expressions for the inverses has been widely
recognized. Attempts [8]1, [12] at deriving such
cxpressions 1n the past have involved unnecessary
assumptions (e.g., distinct eigenvalues) and their
practical use would (unnecessarily) require
computation of both eigenvalues and eigenvectors;
in addition, these results have no theoretical
utility. Partial objectives of this work are to

1. permit most efficient numerical evalua-
tion of the desired inverses; and to

2. vyield theoretical results and new alge-
braic identities which have facilitated solution of
control problems that hitherto appeared formida-
ble, if not intractable.

InPart I below, closed form expressions for
all transformations are displayed in systematic
arrays. These formulae have been programmed
for digital computation and used in the design of
an advanced attitude stabilization system for non-
rigid aeroballistic vehicles which were 'flown"
successfully in computer-simulations {13].

Furthermore, some of the new algebraic

identities established in Part I have been used in

roving various new theoretical results([10],
Ell], 13], {14] where the identities are stated
but not proved). For example, use of phase
variables in [10] supplies a direct design proce-
dure which is the inverse of the (indirect) root-
locus approach.

A new and evidently important nonlinear
transformation, together with its explicit inverse,
is introduced in Part II by making free use of the
linear canonical forms. This transformation
renders trivial the integration of the Hamilton-
Jacobi equation pertaining to ""bang-bang'' optimal
feedback control. In fact,the state-space phase-
portrait on each side of the switching surface is
transformed explicitly into a ''rectified' flow
along parallel straight lines.

The nonlinear canonical form also permits a
constructive solution of the celebrated time-
optimal feedback regulator problem. It is shown
in Part III that the general time optimal switching
function embodies three féatures noted in the low-
dimensional special cases previously solved;
namely, the solution is an analytic function of
fractional powers of the system's first integrals
which can be generated on-line by means of
logarithmic amplifiers.

Applications to minimization of quartic and
higher order performance indices are also
considered.

The system to be studied in this paper is of
the type

x = Ax +ay (1)



where
x = Ax (2)

governs the evolution in time of the uncontrolled
plant, where the letter a denotes the actuator
vector, and where the scalar function ¥ = y(x)
denotes the feedback control law. In general, the
solution of the system of differential equations (1)
involves the transition matrix eAt, whose Laplace
transform is the resolvent matrix (sI - A)-1
where I is the identity matrix and s is a complex
scalar. It can be shown [4], [15] that this
matrix is given by

(s1 - a7t = e (3)
where
n n
A(s) = det(sI - A) = Z ajsj s I‘(s):Zsi'lsi, (4)
j=0 i=1

and the S}, S5, ..., S_ and theag, @), . .., ap
are effectively computagle by the recursion
relations

a, =1, s, =1, (5a)
=1 -

an-j =3 trace (Asn-j+l)’ Sn-j —an_J.I+ASn_j+l

(5b)
The matrices S; can be shown [4] to satisfy
n
sn-_j = Z CLiAl-n+J ) (5c)
i=n-j

The controllability criterion of Kalman [9]
is fundamental to the present analysis and will be
assumed henceforth. For the system (1) it can be
expressed in determinantal form as

n-1
det D#0 , D=1(a, Aa, ..., A a) . (6)
Certainly, if (1) is controllable, the system of
simultaneous linear equations
Allav=o, ...,

arb=0, Aa'b=0, ...,

A" %20, A" lap- "
must have a unique vector b # 0 for its solution.
The vector b can be computed by Gaussian
elimination. In general, computing b represents
(1/n)th of the arithmetic labor required to invert
an n X n matrix. The key inverse matrix desired
has columns (A¥)i-lp; elementary recursive
formulae then supply the other matrices directly.

The vector b is quite remarkable for several
reasons. In addition to supplying all five canoni-
cal forms presented here, it is fundamentally
related to the magnitude of the linear feedback
signals required to force (1) to behave in any
arbitrary manner [10].

Furthermore, the vector b is the normal
vector at x = 0 to the time-optimal switching sur-
face of the given control problem. in fact, it will
be proved that near x = 0 the time -optimal regu-
lator law has the form

¥ = - sgn[b-x + p(x))] (8)

where [p(x)/ | x {|120as || x|}20; thus at x=0
the surface b.x = 0 is the tangent hyperplane of
the surface b-x + p(x) = 0,

Part I. Linear Canonical Forms

In this section there will be established a
complete set of explicit transformations among
the canonical forms

Given state variables: x = Ax+al , (9a)
§=CO+e™, (9b)
Generalized Lur'e variables: $=C%p+ely » (9¢)

E=NE +uy , (9d)

Phase variables:

Lur'e variables:

where case (9d) is void unless the characteristic
roots Aj of A are distinct, where C is the com-
panion matrix to A, namely

[0 1 o ... o o]
0 0 1 ... 0 0
C = . . . e . . ,  (10)
0 0 0o ... o0 1
| %0 -¢1 -a, -an_2 'O‘n-g
and where
A=(el, dpe?, oo A e, u=(1, 1, ..., ¥

(11)

The forms (9a)-(9c) are real. Since the A; occur
in complex conjugate pairs, it will be shown that
the §; do also; it is easy to put (9d) into a real
form in which the complex diagonal matrix A is
replaced by a real matrix which has 2 X2 sub-
matrices along the main diagonal and in which
each component of u is either 1 or 0.

Using symbols to be defined as the outline
of the derivation proceeds, the desired transfor-
mations are as follows.

Coordinate Transformations in
Vector-Matrix Form

g
X 6 ® (Ai#15)
x | x=x 6=L*x | o=TL¥ | = V¥
8 x=DT8 6=6 ©=TH§ €= 2%T8H
® x=Dep 6=T-lp =0 €= 2%p
g
(7)) x=DWE | 8=T-1wg | v=Wwg £=€

Coordinaté Transformations in
Vector-Scalar Form

2 l i-1 & i
x:ZB.Sia=Ew.A a=i¥l§iu

i n (ni!
el . )
8. = (A%)'7 bx = Bow, =3 o
i o ) jtn-i+1 = 8 ()\j) ]
V-1
n n n (X))
. = (S.%b)'x = 0.8, . . = L o } g,
i i jgi jo-ivl jgl {\E A (xj) v i
n k- & -1
g o= vix = ) Y axIbe = X, ©.
i =1 gkq k7 ) j)=:1 : J

All of the transformations depend directly on the
basic identities

L-14 [(b,A*b,. oo (A”ﬁ“'lb)]'1 =(Sja, Sz, ..., Spal,
(12)
plt [(a, Aa, ... ,A“'la)]'l = (S{b,S3b, ...,s;‘l'b)*,
(13)



(L-h* = b1, (14)
where
(11 G.Z e e An-1 1
ap a3 e 1 0
T - 7% (15)
An-1 1 e 0 0
1 0o ... o 0]
The inverse of T is
o o ... 0 1]
0 e 1 B
1=, e . . {16)
0 1 Bn-3 Bn—Z
_1 B8y .. Bn-2 Bn-l_

where the B; are defined by the Laurent series

o
8
. .
m-)=z~n—%r_)_" (|s|>max|)\i|) s {(17)
—n S
j=0
and can be calculated by the recursion relations
1-1
Bo=1, BL--ZaJm By (=12, ,m) (183)
=0
4+n-1
Blin™ aj-éej' (t=1,2,3,...). (18b)
=t

. To prove (12), consider the equivalent form
el = (S)a, Spa, ..., Spa)¥(A%)i-1b, which, under
row by row expansion and application of {5¢) can
be expressed as

n+i-j
a¥ ) api (A b= 8 (19)
k=i
Now from (7) expressed in the form

5, = ax(an s (20)

it is easy to show that (19) is valid for 1sk=n, or
when j2i. When j<i expand the left side of (19)
into two parts, the first consisting of the terms
for which isk<n, and the second consisting of the
remaining terms (n<ks<n+1i-j). Then by using
(20) in the first part, and the Cayley-Hamilton
Theorem in the second, the proof can be
completed.

The identity (14) follows directly from
explicit expansion of the matrix product DT and
application of (5¢) and (12). Similarly, identity
(13) comes from the expansion of LT and the use
of {5c) and (14).

The relationships (18) can be verified by
manipulating (17) into the form

® n

- EY
1= Z Z @85 4von (S (21)

v=0 \i=max{n-v, 0)

and then comparing coefficients of s~Y on both

sides of the equation. Using (18a), (16) can be
established by direct matrix multiplication of T
and T-1.

A. Phase Variables (8)

Consider the output of interest for the sys-
tem (1) to be

8, % bx . (22)

By alternately differentiating (22) and applying (1)
and (7), the relationships
atlg . . A% a N
—_ = (A% " 'bex , = (A% bx+ ¥

i-1 n
dt dt (23)
h

can be established. Then, multiplying the jt
derivative of 8] by a;, summing over
j=0,1,2,...,n, and applying the Cayley-
Hamilton Theorem gives

LN

5 aj ——= 4(d/d1)g,; = ¥ . (24)
J

‘ dt

j=0

Upon defining the state variables 8y, 85, ...,
8, by

6.

i-1 i-1
p= a7 e a , (25)

the nth order scalar differential equation (24) can
be expressed as the first order matrix system (9bl.
On combining (23) with (25), it is obvious that

6= (b, A%, ..., (A%"P-1p]x=L%x . (26)

Note that applying this directly to (1) and com-
paring the result with (9b) shows that C= LA(L*)'I.
The identities of (12), (13), and (14) can be used
to give the explicit inverse of (26), namely

x=(LY18=(Spa,S,a,...,5.2)8 :Z 9;S;a, x= DT .

B. Generalized Lur'e Variables (9)
Let

» 2D x=TL¥ . (28)
Then (1) becomes
¢=(lapwp+bdDlay . (29)

Upon forming the product DC*, and applying the
Cayley-Hamilton Theorem to the result, it
becomes obvious that C* = D-l AD. From (13),
it can be shown that D-1 a =e", whence (29)

is equivalent to {9c). Combining (28) and (13)
gives the inverse transformations

®; = (Sib)- ,
1= (57p)x (30)

n
-1 i
x=Dv=(a, Aa, ..., A" a)w:ZwiA‘ 1y .
=1
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To find the relationship between @ and & apply
(27) to (28), obtaining
T

®=T9 , 8§ = (31)

The corresponding vector-scalar formulas shown
in the table above can be derived directly from
these relations and the basic properties of the a;
and B;. The details are somewhat involved but
quite straightforward.

C. Lur'e Variables (§)

Consider the ® coordinates for a system with
distinct complex eigenvalues Ay, (i=1,2, ..., n)
Multiplying both sides of the vector system (9¢)
by the transpose of the Vandermonde Matrix
Z = (!, 22, ..., zB),where

n
2t = Z(xi)k'l & (32)
k=1
and simplifying the result by using 8(};) = 0
yields
n n
J=lg j
PRSI IEE R’ (33)
=1 1
Defining a new vector £ by
g & z%o (34)
or equivalently,
(35)

n

A j-1

S S
j=1

(33) yields {9d). The inverse of the matrix z*
can be shown to be W = (w!l,w<, ... w!') where

n 0 )j—l n
i i _ i k-j+l
w = Tz /A ()\i) = Z 2 0g) Z a, e , (36)
j=1 k=j
with 8'(X,) denoting the polynomial d(A(s))/ds
evaluated at s=Aj. Clearly then
o= ws, W= (z9 (37)
The relationships between £ and 8, namely
o = Tlwg (38a)
£ = Z2¥T8 (38b)

follow from (37), (31), and (34). Details of the
development of the corresponding vector-scalar
forms are omitted.

Combining (30) and (35) the relationship
between x and £ is seen to be

g=vi%, g =ix, (39)
where
n
Vel vE L, v, vEinJ'ls"Jfb:r’:‘(xi)b.
=1 (40)

Alternatively, from (14), (30), and (34),
€ = Z¥TL*x, so that

V= Z¥TL* (41)
By (14) and (37), the inverse relationship is
x=UE , Uub(z*¥rtL%-!=-Dw (42)

Expansion shows the ith column of U to be

n j-1
‘ ) T(\.)
i 1 _ 1
u = g —A'O\i) Sja A0 a

=1

(43)

D. An Alternative Generalization of the Lur'e
Variables {£(s))

The identity

n n
i=1 j=i

can easily be verified by equating coefficients of
like powers of 1 and U where these quantities obey
the commutative and distributive laws of algebra.
With no loss of generality, 7 can be identified
with sl and W with the matrix A. Then, by the
Cayley-Hamilton Theorem and the definition of
T(s),

A(m) - &) (44)

Ms)I = (sl - A)T(s) (45)

Indeed, (3} can be found directly from this rela-
tionship whenever (sI - A)-! exists. Multiplying
(45) on the right by the vector a, applying the
definition

A Tis)a

u(s) = &(s) s (46)

and using (4), it can be seen that, identically in s,

Au(s) = su(s) - a , (47a)

uls)b = K(l;) (47b)

Similarly, considering (44) again with A™ as U,
and using

v(s) & Ms)b (48)
the identities
A¥v(s) = sv(s) - A(s)b (49a)
v(s)a = 1 (49b)
can be derived.
Now define
POy : (s)d
uw - lim S = u{s)ds , (50a)
00 2m J-1
is - )\il =p
VA vy =T b, (50b)
and note that when the ; are distinct,
. T(\;
i i
u —A.()\.)a . (50c)

1

Applying the contour integral operator of (50a)
to (47a, b), and inserting s = A; in (492, b), one
obtains, for the case of distinct i,

Aul = Ay ol

A%yl = A vl o,

wlb = 1/8'(0ny)

via =1

(51a)
(51b)

Furthermore, comparing (50c) with (43), and
(48) with (40), it becomes clear that the columns
of U are the eigenvectors of A normalized by the
scaling requirement ul.b = 1/4'(};), and that the
columns of V are the eigenvectors of A®
normalized by the scaling requirement vl.a = 1.
Since standard digital computer routines do not
normalize the lengths of the eigenvectors ul and
vl in this manner, care must be taken to multiply



ul by [1/(u1 b)a ()\ y1, and to multlply vi by
[1/(vi-a)] (which is permissible since neither
denominator vanishes, by the hypotheses of
controllability and distinct roots). This discovery
that the Lur'e canonical form is precisely equiva-
lent to the standard diagonalization procedure
when normalized as in (51a, b) is practically
useful in numerical work.

Note that (39) can now be generalized, using
(48) and (30), to

n

£(s) = v(s)x = zsi'lwi . (52)

i=1
Then, taking the scalar product of v(s) with the
system (1) and applying (4%9a, b), it is found that

vis).x = x¥(sv(s) - A(s)b) + ¥ . (53)

Now using (52) and (23), the above becomes

E{s)= sE(s) - A(s)8) +¥ , 6] =bx=w, . (54)

In Part II the system (1) will be considered
in the form (54), which is equivalent to (9¢) and
may be regarded as another generalization of the
Lur'e canonical form. In fact, when the eigen-
values of A are distinct, £§ = £(A;), and, setting
s = Aj in (54), the Lur'e system (9d) is
recovered. On the other hand, whether or not
the A{ are distinct, the identity (54), which, in
appearance, is highly reminiscent of the Lur'e
form, can be regarded as the collection of n
differential equations obtained by equating like
powers of s on the right and left hand sides.
Then, on inserting (52) into (54) and comparing
coefficients, the canonical form (9c) can be
recovered immediately. It is for this reason
that {9c) was called the "Generalized Lur'e
Canonical Form."

Part II. A Nonlinear Canonical Form

In this section it will be shown that the {real)
systems

= Ax + ae , (e = x1) , {55a)
and .

g=ee , (e = 21) , (55b)
are related near x = 0 = 0 by the uniquely recip-

rocal (real) transformations

_j-l
1 s
%= f 5(s) s

Zﬂj-_l IS =0

log [1+esE(s)]ds ,

(56a)
E(s)=v(s}x ,
n n=Vv
X = - f ZZ Ayt s g u(s) ds,
BRI S (56b)

where the path of integration is a circle enclosing
all the roots of 8(s) = A(X;) = 0; that is, D>max|>\i| .
For systems with distinct eigenvalues, (56a) and
(56b) become, respectively

2 ()T
_ 4 )e i
o= Ty 3)‘i log [1 +e)\i§i]E, gizvl.x

1=

._
—_
w
~

o

n n-v

n
- £ L+1 .
Y e e 20 2t

i=1 1=0

Furthermore, it will be shown that the transfor-
mation (56a) can always be expressed byaneigen- -
function expansion

% = Z B in-itl (@)
-0

where the By satisfy (18), and the eigenfunctions
wy = wy(®) are multinomials of degree V in @3,

? = (STe)x , (58)

®2, ..., ¥n, also recursively computable by
- — o € N =
W= wv_\pv_v Z mwm‘Dv-m , (v=2,...,n),
{59a)
n
R (Vn-i)p, & , (v=1,2,3,...)

i "vin-i
i-1 (59b)
Note that By = Bg(A), and @ =ij(x) :(‘pj(x; A, a) but
that the multinomials wy = wy(¥) depénd only on
the dimension n of the system and therefore can
be computed and tabulated once and for all.

Vin vin

The transformation (56a) also can be
expressed by a power series expansion

o = A b <L (eQp) . (60a)
where
0 o ... o© 1 By |
0 0 ... 1 By B,
a.lo o ... B 8 B
Q, é (D 1).,\ 2 3 D—l
1By Bn-3 Pn-2 PBn-l
81 B Bn-2 Bn-1 Bn | (60b)
Q4 S A% G=1,2,...,n-1) (60¢c)

In the case of distinct roots )‘i’ alternative
expressions for the power-series coefficients are

) n ()\.)j-l
wmi-ly E R S
(A™) b = A'()‘i) v, (604)
i=1
2 )
_ wj-1 _ i i, iy
Qj = (A7)Y "Q) = E ATy viv’) (60e)

i=1

The authors have simulated approximately
time -optimal systems of order n = 2,3,4,5 on
analog computers by each of the three nonlinear
canonical form approaches (57a), (58), and (60a),
and have experience in the numerical use of (18),
(59a, b), (60b, c), and (60d, e). On combining the
complex conjugate terms in (57a), it can be seen
that on-line mechanization of 0; can be effected
in an analog control-computer using nonlinear
amplifiers which over a suitable dynamic range
provide the logarithm, exponential, sine, and
cosine. Use of solid-state devices of known
nonlinear characteristics (e.g., Zener diodes),
or piece-wise linear approximation of the J; by
b1ased dxode function generators may prevent

= [(A*%)j-1 bl.x + ... for holding for small

”xH Therefore (60a) is desirable for small
”x" However (60a) in the form 0; = [(a? %j-1p]x
does not yield stability in general (unless the
vector b is '"tilted" to compensate for the absent
quadratic and higher terms) nor does even the




form 0; & [(a®)i-1p]x - -21- € (x- ij) yield asymp-

totic stability for unstable plants unless Q; is
modified slightly for similar reasons. The fact
that the required modification in Q] is less than
that needed in b suggests that perhaps extension
of (60a) to include the cubic terms in x would
constitute a practically adequate (local) mechani-
zation of (57a). The truncation properties of (58)
are quite different. Recalling that B; = 1, and
defining p >max )\il, it can be shown that as

P30, B\y?0 for v=1,2, 3,.... When)| = Xp = ...
=Ap =0, 04 Twy 511(®(x)) and the truncation of
the series (58) at its first term is rigorously
valid.

The nature of the preceding transformations
depends on the theory of "integrals' and "iso-
chrones.' A first integral of the nth order system

x{0}) = x° (61)

is a scalar function {(x) such that
Clx(t)) = ¢(x® or

is satisfied along any solution of (61). Geomet-
rically, (62) defines an integral surface such that
any state space trajectory initiating on it must
remain on it for all t. The term "integral" is
used interchangeably for the function {(x) and the
surface {(x) = constant.

x = f(x) ,

f(x)-grad ((x)=0 (62)

An isochrone is a surface defined by setting
the scalar function y(x) = constant where y(x)
satisfies

yIx(t)) = y(x°) +t , or f(x).grady(x) =1 . (63)

The time for points on various trajectories to
move between fixed isochrones is constant; hence
the term '"'isochrone.' Here also, this term can
refer to either the function y(x) or the surface
yY(x) = constant.

The following basic properties of integrals
and isochrones are readily proved.

l. Any arbitrary function of integrals is
also an integral.

2. Every integral of an nth order system can
be expressed in terms of any n-1 functionally
independent integrals in the neighborhood of a
non-equilibrium point. (Proof is analogous to the one
of [16], p. 115.)

3. The sum of an integral and an isochrone
is an isochrone.

4. Every isochrone of an nth order system
can be expressed as the sum of an arbitrary
function of n-1 functionally independent integrals
and any particular isochrone.

Clearly, the 07, 02, «.., 0y_] defined by
(55b) are first integrals of (55a), while 0 is an
isochrone of that system. It will be shown below
that as a consequence of controllability the T1»
92 ..., 0y are indeed functionally independent so
that all of the above properties apply to these
functions. The transformations discussed here
can be viewed as methods of generating integrals
and isochrones for (55a), instead of relationships
between canonical variables. This alternative
viewpoint is fundamental to analysis of the time-
optimal problem.

A. Transformation from x to 0

Differentiate (56a) and apply (54) to obtain

]
S

)

g. = €

J 21 J__l|slzo Als

@

)
=l
+~
m 2/
vm +

)
w

o

»

0
.
]
—

1 f sj-lsl ds

“2m A1 Ltesi(s) (64)
Isf=o

Now, by complex integration as p=*®, the first

term of the right side of {64) becomes

j-1
€ s ~
2m J-1 f 50s) - %% (65)

s[=p

while the remaining term can be expressed as

w

J1 Z (-1)*[esz(s)1¥ Las=o0 ,
sl=p k=0 (66)
if |p&(p)|<l. (Note that the condition |p&(p)|<l can
be obtained as a constraint on ||x]|| by applying
(52) to obtain ||x||<1/pV(p) where ¥ is the upper
bound of lv(s) on |sl = p.) The above resultis
obvious, since the integrand is analytic in s.

Thus (56a) does indeed yield (55b) when applied
to (55a).

B. Transformation from 0 to x

The simplest proof of {56b) seems to be that
in which (57b) is proved first, independently; and
then used to establish the more general result.

Consider (57a) and define a vector q such
that each component is given by
€

1
q = 0y )\'—1- log [1 + er8il . (67)

Then (57a) can be expressed in vector-
matrix form as 0 = Zq, where Z is the
Vandermonde Matrix (31), Applying the inverse
of Z, (36), q = W¥0, or gl = wi-o, and (67) can be
written as

exp [exi8' ) who] 1] L (68)

€
£, = =
i )\i

By expanding w! as in (36) and rearranging, (68)
becomes the first desired result (57b).

Now define a transformation x = h(J, €) by
(56b). Using the Calculus of Residues, it is
clear that (57b) is equivalent when the X; are
distinct. Also, for distinct Aj, (56a) and (57a)
are equivalent. Hence it is certain that (56b} is
the inverse of (56a), at least when the A; are dis-
tinct. It will now be shown that this proposition
is valid for all systems, even when the ) are
non-distinct. To accomplish this, consider (56a)
in the form 0 = p(x;€, A, a) and define A to be
simple when the roots of its characteristic poly-
nomial A(s) are distinct. It is well-known that if
A is not simple there are simple matrices A,
such that HA—AOH is arbitrarily small. Thus
it has been shown that there exists a function
h{c; €, A, a), namely (56b) such that h(p{x;¢, A, a);
€, A) é/}}(x;e, A, a) =x is valid whenever A is sim-
ple. Now take A non-simple. Let {Av} be a
sequence such that Ay,is simple for each v=1,2,3, ...
and such that Ay?A as V?*®, Now the integrand
in (56a) is a continuous function of x, A, a,



and € since v(s) is a polynomial in A, a, and
1/8(s). Recall also that 1/4(s) is an infinite
series in powers of 5‘1, which converges for
s|>max (i), whose coefficients are rational
functions of A. Thus p(x;€, A, a) is a continuous
function of all its arguments. Clearly, an analo-
/ﬁous result can be obtained for h(c;¢, A, a). Thus
(x €, A, a) is continuous in all arguments and so
h(x,s, Ay, a) Fhix; e, A, a) as v*=. But since
hix;e, Ay, a) = x, it follows upon taking the limit
that h(x €, A, a) = x. This completes the proof
of the validity of {(56b) as the general inverse of
(56a).

C. Expansion of 0 in Series of Recursively
Computable Multinomials

Consider the Taylor expansion

€ log (1 + es&(s)) , 109)

which holds for |esZ(s)|<l. Since, by (52}, £(s)
is a polynomial in s, the right side of (69) must
be an infinite series in s and so

Z wisd (70)

j=1

€ log [1 +¢esE

where the coefficients w;:, (j = 1, 2, 3, .}, are to
be determined. To accomplish this end, differ-
entiate both sides of (70) with respect to s, apply
(52) and simplify, obtaining

min
n ® ® (k-1,n)
L i-1 . j-1 . -1
i=1 j=1 k=2 i=1

(71)

Then, equating like coefficients in (71), the
recursion relations (59) can be established. Now
note that, using (70), (56a) can be expressed as

si-l 1 i ]
g. = = w.s'ds . (72)
! / J
an | l-e j=1

From the series expansion of 1/A(s) given in
(17) and the Calculus of Residues, (72) yields the
desired result {58).

Example: the n-Fold Integrator

The system

a's;/a” = eE“J - ¢ (73)
was treated by Lewis and Mendelson [5] for
n = 3, 4, but no systematic procedure for calcu-
lating the integrals and isochrones of (73) was
given. Byapplication of (58)—(59), it becomes a
simple matter to do so. Since the characteristic
equation for (73) is A(s) = sh, Qo =Q) =...=
An-] = 0. Then from (18) it is clear that 3{, =0,
£t =1,2,3, .), and so {58) becomes 0, i T neitl-
Also, by thc VULtOI‘ scalar relat1onsh1ps between
yand 0, ;=5 ;. =0 n-1] =1, 2 ..., n.
Thus {59) yields

g - an-lJ

I
n “1 s (74a)

n-i
o 8[1-1J ) [1+m—l]
“iT n-i+l n-m+l 1 !
m=1
(i=1, 2, .,n-1) . (74b)

D. Power Series Expansion of 0

Expressing the integrand of (56a) in a power
series in £, and applying the expanded form of
(38a) and (23), results in

i-1 R 0! 2
Oj = (A:::)J' b.x-iezm)\iii + ... . (75
i=1
for |)\1>1|<l Define QJ as in (60¢) and apply (39)
| P

to {75) to obtain the quadratic terme in the forin

-1/2¢{a-G:x). L'he relationship A™ QJ = Q4
directly follows from (60e) and (51b). To obtain
a more explicit representation of Q), note that
on using (41) and (14), (60e) (with j=1) can be
expressed in the form

Q, = (D ") ED ) (76a)
. SR .
E & ZA'(M) z (z") (76b)
i=1
Then by (32) and the relation
j-1
S0 8 ' 7
0T 7 B s UL 20 D)
i=1 .
s']-1
(obtained by contour integration of a5y ds)
the (v, u)th element of E is ISIZD
-1
T (v
e ‘Ee” = A'()\i) = BV+|.).-n’ {(v,u=1, ...,n).
i=1 (78)

Thus (60a) is verified for systems with distinct
eigenvalues To generalize the above proof, note
that (56a) is analytic in a neighborhood of x=0,
and so there must exist vectors 4! = £1{A, a) and
matrices Rj{A, a) such that

o; = U -%e(x'ij)+... , (79)
for all A. Furthermore, JCI(A, a) and R, (A, a)
are rational functions of the elements of (A, a).
But the expressions in (60b, c) are well-defined
rational functions of (A, a) whether or not A is
simple, and it has just been proved that

. L ol
T 7 A= TR 1)
whenever A is simple. Hence by the continuity
argument used after (68) the relationships (80)
must remain valid for all matrices A, simple or
not.

Previously, it was claimed that the elements
of 0 are functionally independent at x=0. This
can be proved by means of the series representa-
tion for 0. The Jacobian Matrix for the trans-
formation in question is, by (60a), L=(b, A™D,

, (A*)n-1p, From (14), however, det L=detD,
hence L is not singular if the system (1) is
controllable.



Part III. Optimal Nonlinear Feedback Control

Imposing an inequality constraint upon the
control function ¥, consider the problem of
choosing ¥ in

x = Ax + aV , [vlsl ,  x(0)=x°, (81)

s0 as to minimize a performance criterion

.
& = $(x°) =/ Y(x)dt , (¥>0 if x#0) , (82)
0

where the stopping time T = T(x°)< +® is defined
by x(t)?0 as 0<t2T.

The Hamilton-Jacobi Equation and Liapunov
Stability

Assume that an optimal control law ¥ = ¥(x)
is known, and that $(x) and T(x) are continuously
differentiable. Obviously (82} is a solution of the
partial differential equation

24 (Ax + al)-grad @ = - ¥(<0ifx#0) , (83)

because d&(x(t) )/dt = ¥(x) when x(t) satisfies
(81). Similarly, if ¥(x) and V(x) are such that
(83) has a positive definite solution &(x)>0 if
x#0, with %(x)-‘+°° as ||x|| #+=, then either
there exists a stopping time T, or else (if ¥ is
not everywhere continuous) a time To(x°) such
that the solution of (81) cannot be conventionally
defined for t>T7,. (For the theory of "chattering'
or "after-end-point motion" or the ''sliding
regime,' see [17).) Note that (83) can be
expressed as

H=¥x,y,¥) =0, %8 y(ax+a¥)-¥x , (84)
y = - grad ¥(x) . (85)

Principle of Optimality and the Maximum
Principle

If the problem (81)—(82) has a solution then
the Maximum Principle, which has been proved
rigorously [18], asserts that as a necessary
condition there exists, for fixed x°, a function
y = y(t} = y(t;x°) such that not only (84) holds,
but moreover

¥=WNx,y) =0, ¥=m

H¥(x,y, ¥) . (86)
[y

ax
I=s1

X = grad(y)ﬂ((x, v, ¥, v o= - grad(x)V(x,Y, ¥) (. )
87

However, (85) is not claimed to be necessary.
Starting from the valid Principle of Optimality
(191, a formal, heuristic argument indicates that
(84)—~(85)—(86) are both necessary and sufficient.

But rigorous study of (84)—(87) is difficult. Clearly
(86) implies that

¥ = sgnlogx)] , 0,(x) e -a-grad $ #0 , (88)

whence there is a hypersurface, 0o = 0, along
which {(x) is discontinuous; on either side of this
surface, Y is a constant. It is easy to prove that
if ¢ satisfies (84)—(85)—(86) in the complement of
the set 0_(x) = 0, then the known necessary con-
dition (8'? is a corollary. However, the defini-
tion of ¥ on the set Oy = 0 is difficult, as is the
extension of the just mentioned result about (87)
onto the set 0, = 0. In some problems ¥ must

be given the value +1 or -1 on various portions
of the set 0, = 0, so that 0, = 0 constitutes an
integral surface. Other problems [11] allow
two equally valid alternatives: (i) ¥ can be
defined as a continuous function such that 0,=0
is an integral surface; or (ii) ¥ can be regarded
as zeroon 0, = 0, and yet the ''chattering
regime' governed by (88) yields an x(t) identical
to that of (i). This phenomenon is connected with
the singular solutions of (81)—(82), along which
a-y(t) =0, and singular surfaces of (84)—(86) on
which a-grad ¢(x) = 0. Choosing alternative (ii)
unifies the two kinds of problems under the
subject of bang-bang control, wherein

x = Ax +ac , € =¢{x), €=1 . (89)

Denoting (59\1)) by x = h(0), and defining @(G) é
8(h(0)) and ¥'(0) & ¥(h(0)), the system (89)
becomes 0 = een and the equations (84), (85) and
(88) become

(3%/30,) = -t (o) , (90a)
¢ = - sgn [38/30,] . (90b)

In this new form, the main import of the
Maximum Principle, (90b), is e(%livalent to a
much simpler idea, namely that? is a positive
definite Liapunov function for the bang-bang con-
trol system (89) which (before chattering) is
''stable" by virtue of having Y as its negative
Lie derivative. Solution of (90) is trivial and
yields as the general solution of {84)—(86)

=2 (0)(x,€) ..., Op_1(x,€))+¥(0(x, €)),
(91a)

Gn
2y(0) = - e/ ¥(h(0y, 05, ..., O], H))dH,
0

€2 = 1 , (91b)

where ¢ = ¢5(0,, ... , 0 ) is an arbitrary func-
g .0 1 n-1 .

tion of its n-1 arguments. Assuming %(x) con-~
tinuous, any surface of discontinuity of €(x) is
constrained by the requirement that ¢ (o(x, -1))+
¢y (o(x, -1)) = ¢ (o(x, +1)) + ¢, (o(x, +1))for x on
the surface.

Quadratic Performance Criteria

In [11] it was shown that if ¥ = 1/2 x-Cx is a
positive-definite quadratic form, then for x suf-
ficiently near x = 0
€= sgn[Go(x)] » Op=-{0,-8,(0),0,, ...,051))

(92)
for a suitable function @n. Also there exists a

non-negative definite matrix B such that, in (91),

@n)'Bh(Ul, ceey on_l: @n)

1
@o=zh(01, cees Op)s

S 2 A TIPS N (93)

Time-Optimal Control

When Y =1, the celebrated time-optimal
problem is obtained. It will be shown here that,
near x = 0,

e=sgnlog(x)] , o5=-(07-2,005,...,9,-1)) s,

A A A (94a)
oizoi(x,é), e = e(x), €2 =1, (i=1,2,...,n-1),
(94b)



@,/ 1lx 1y »0 as [x]l+0 , (940

where $(05, ..., dy_1) is an analytic function of
fractional powers of its arguments, and where
€(x) is characterized on and off the surface
Go(x) =0 by

€=-€ , OO#O , (944d)

m>

€ = , o =0 . (94e)
Itis known [19], (18] that for linear controllable
nth order systems with real eigenvalues, time-
optimal control can be effected by at most n-1
switches of a bang-bang control €. For systems
with complex eigenvalues, this result remains
valid for initial conditions sufficiently near the
origin in state space. Thus the state trajectory
of (89) originates at x° with a specific €, say

€y = €(x°). When x(t) crosses the switching sur-
face, the system is governed by
x=Ax - a€ (95)

during the next arc of the trajectory. Thus, the
optimal switching surface for (89) is an integral
of (95), which therefore must be some function of
ey Opot-

The solution of (95) is

t
x{t) = At it -/ ¢ Bt adyd . (96)
0

Ops Tp e

If x! is on the switching surface, then
n-2 ti+1
At : Alt -M)
O=e nlxIZ(-l)J+1€f e n-1 adu

j=0 tj

(97)
where tg is the time at which x(t) enters the sur-
face, where ty, t3, ..., th.p are the subsequent
switching times, and tn.] is the stopping time.
Solving for x! and applying the convenient
substitution,

nle g (=0 Lemh o 099)
yields
® v n-2
1_ (-1) j vl
x=€ z BI33) z -1 [(‘Tn-j-z)
v=0 j=0
-(-Tn_j_l)v+l]Ava . (99)

Thus, taking ty = Tp-] = 0, the parametric form
of the switching surface is

x=x(n) &)™ he z dumata (100
v=1

n-2
Vv _] v
LI z SURAS BTN
=1

ne>

1
IV

Py (M)

The tangent hyperplane at x = 0 is given by q-x=0,
where q is the unit vector whose scalar product
witvh (100) idventically removes the terms in TOV,
Ty seeer Tnoge 4V=1,2,..., n-1). By (7) it is
clear that q = b/ | |b|| as claimed in (8). Thus it
is seen without further calculation that the

integral surface 04 = 0 must be expressible in
the form o) - ¢, (5,..., 9y_1) = 0, where
@2 = O(I |X |)

The gemeral properties (94e) of the auxiliary
switching function © = &(x) are obvious. The
detailed procedure for calculating &(x) and
¢5(05,..., On_1) is based upon simplification of
(1oofby means of (56a). First (52), (7), and
repeated use of (4%9a), yield

> - v-l |
f(e)=-1" e D b [sv- b)) (o (A% a) s“‘]-
v=1 k=1

(102)

Then, with (69) and the Calculus of Residues,
(56a) becomes

! rogtl e < (-1)3.:1
C. = —_ | 2 AN
e R

s|=p j=1

® i
- te Z c?)v(n sVl ds , (103)
v=1

A
or equivalently, if |s§(s)l<l,

= ! Sj_l
3 2n V-1 lSl=D A(s)

o)

c A
< log(l+€s E(s))ds ,

(104a)
& A n-1 A v
E(s) 2 (-1) € z e, (Ms” . (104b)
-1
Defining &j, G=1,23,...)by
(-1 log (1 4 € s8(s)) 2 Z uﬁjsj’l . (105)
i=1

and proceeding as in Part IIC, the new para-
metric form

0 teo = z Baby noiar (T o+ (1062)
1=0

A A
wp = q)l (1),
V-1
A (_1)“‘1 A A N
by=dym + L S md b o
m=1
(vV=2,3,4,...) . (106b)

can be derived. The function ¢ is defined by
solving (106a) fori=2,3,..., n {20] to get T4,
(i=0,1, 2,..., n-2) as functions of G, ..., Op
and noting that Tj are real and such that

To< TS STy 2<0. Since the 0j are integrals
for(i=1, 2,..., n-1), they are unchanged by
letting T, _, * 0. Now eliminate [20] the n-2
parameters To<T) <, ..., <Tp.3 between the (n-1)
equations (106a), fori=1, 3, ..., n-1, obtaining
0y = 8,(0p, ..., Oy_)) where ¢, is an analytic
function of fractionall powers of its arguments.
Clearly O, = #(0] - &) where the choice of + or
- is unchanged by continuous variation of A or a.
When A(s) = s?, as in (73)-(74) elementary argu-
ments show that O, =-8} + ... whence 0, =

-(0] - @2) in general.

H-10
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December 1965

Page No. Line

5-8 2 Delete MATPWR,

5-8 11 Add ", ELINV1(5, 5)" after ", TEMP(5)."

5-10 24 Change "ELINV" to read "ELINV1. "

5-22 22 Change to read "IF(NEVN. EQ. O)COEFF (N+1)=1."
5-22 36 Add "+PART 2" to end of line.
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